FLERTINRTEES FE2L 4

¥ 1# :107# 2% 1p3108# 1% 31p

PR R 108 &# 2 7 11 P



BB Y EHE 107 E RRFEER S kAR

LY E YL TR

- B AR

1wl or TR E e R A — 22 0B - 90 AR IEFTER)

Heat equation: derivation of the conduction of heat in a 1D rod, boundary conditions and physical
meanings, Method of separation of variables for heat equation and Laplace equation, Fourier series and its
convergence, Wave equation: vibrating strings and membranes, Non-homogeneous problems: heat flow
with sources and non-homogeneous boundary conditions; Higher-dimensional PDEs
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Immersed boundary method and applications to the interfacial flows, Immersed interface method and its
implementations, Interfacial flows with insoluble and soluble surfactant: mathematical models, numerical
schemes and applications; \Vesicle or inextensible interface problem: mathematical models, numerical
schemes and applications
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Finite difference approximations, Steady states and boundary value problem, Consistency, stability and
convergence in L2 norm and maximum norm, Two-point boundary value problem with delta function
singularity, Discrete delta function and interpolating accuracy, Elliptic equations and finite difference
schemes, Fast elliptic solvers, Parabolic equations and finite difference schemes, von Neumann stability
analysis, Hyperbolic equations and finite difference schemes
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Introduction to Scientific Computing/Finite
Difference Methods for PDEs

Ming-Chih Lai
1 Introduction

Some Terms:

e Numerical mathematics or (computational mathematics) are a branch of applied
math using computational method to solve math problem.

e Numerical analysis is mainly to consider the theoretical analysis of the methods.

e Scientific computing is to emphasis on getting computational results on realistic
model.
The justification of a valid method is either with rigorous theoretical proof or
comparison with experiments or observed data or physical phenomenon.
Be able to reproduce well-established results.

Numerical methods

Finite difference method : Easy to understand, regular domain and many package
available.

Finite element method : Theoretical background, Sobolev space and irregular do-
main.

Finite volume method : The integral form of conservation law.

d
ﬁ/udx = —f(u)|sq

Spectral method : Very accurate to linear problem. Fourier analysis, Chebyshev
polynomials, pseudospectral method



Second-oder P.D.E
Pu = augy + bugy + cuyy + du, +euy, + f =0
Elliptic P.D.E : b2 + dac < 0

Hyperbolic P.D.E : b* + 4ac > 0

Parabolic P.D.E : b*> 4+ 4ac = 0

Elliptic P.D.E

Laplace equation Viu = % + gi;; =0
Vi=A

Poisson equation Viu=f

Helmholtz equation Viu+ Au = f

Biharmonic equation
o*u Lo o*u N o*u
4 02202 Oy

4 2 2 _ _
VU—V(VU)—ax =f

| o,
u = _— =

Cauchy-Riemann

Uy — Uy = 0,
Uy + v, =0

Stokes’s equation

V-u=0

where u = (u,v) is velocity and p is pressure.

{ ~Vp+Vu=0

Hyperbolic P.D.E

Linear advection equation wu; 4+ au, =0
Wave equation uy = Uy,
Inviscid Burgers equation wu; + uu, =0
Hyperbolic conservation law  u; + (f(u)), =0

All equations must be accompanied with some sort of initial conditions.



Parabolic P.D.E

Heat equation wu; = ug, + f(z,1)
Navier-Stokes equations:

w+ (u-Vju+ Vp=vAu+ f,
V-u=0

u(z,0) : given

ulgo =0 mno-slip conditions



Introduction to Scientific Computing: Lecture notes

2. Steady States and Boundary Value Problems

The steady-state problem

Consider the one-dimensional heat equation

U = Ugy — f(x), x€(0,0), t>0,
u(z,0) = ug(x),
u(0,t) = u(l,t) =0,

where u(z, t) stands for the temperature. we expect the solution to eventually
reach a steady-state i.e. uy — 0 ast — 00, so we obtain an ODE in x to solve
u(z). This problem is called a two-point boundary value problems (BVP) as
following;:

{ u'(x) = f(z), 2e€(0,1)

The boundary condition (0
condition.

A simple finite difference method

We use the finite difference method to solve this BVP. First, give a uniform
partition 0 = zyp < 21 < -+ < X1 = 1, where the mesh grid Az =
zjy1 —x; = hfor j=0,1,--- ,m. Define two grid functions U(x) and F'(z)
satisfied

U(zj) = u(z;) F(z;) = f(z;) for j=0,1,--- ,m+1,

where U(zj) is our numerical solution. For simplicity, we use the notations
U; = U(z;) and u; = u(z;). Set Uy = up and U1 = Uppy1, SO we have m
unknowns to compute. Approximate u;-’ by the center difference approxima-
tion

Uj_1 —2U; + U,
uj ~ — ! h2]+ It ofor =1, ,m.
So it is equivalent to solve a linear system as following:
[ —2 1 17 vr ] [ B
1 -2 1 Us Fy
== e : =
1 -2 1 Un—1 Fra
1 =2 Un F,

This tridiagonal linear system is nonsingular and can be easily solved.

4



Local truncation error

The local truncation error denoted by 7; is

S Uj—1 — QU]‘ + Uj+1 _ f
J h2 J
2

h
= Eu;’” + O(h*) assum u"” () exist and use Taylor expansion

for j =1,2,--- ,m. Define a grid function U satisfied (A]j = u; for all j and
E=U-T,

E is said to be a global error.

Before we use this finite difference scheme in our computer, we have
to introduce an important theorem which guarantees that our scheme is
convergent.

Convergence

Definition. A method is consistent if ||7|| — 0 as h — 0.

Assume [uf"| < M , we have |7;| < Ml—gz for all j. This implies 7; = O(h?),
thus we have ||7|lc = O(h?) and ||7]|s = O(h?). Hence, our finite difference
scheme is certainly consistent.

Definition. A method is convergent if ||E|| — 0 as h — 0.

Since A"E = —7, claim A" is invertible, then we have £ = —(A")~1r.
Assume [|(A")~!]| < C for some C, we have

1E]l2 = Il = (A") 7 7]l < (A" allTll2 < Clille,

thus ||E||2 = O(h?). Finally, we have ||E||y — 0 as h — 0.

Now we have to show that our claim is true. Since

1

1
))? -+ A" is symmertic

)
P A((AM)?) = (A(A)?




if A" is invertible, then

A" Y|z = (Aan(A™)

So all we have to show is all eigenvalues of A" are not zero. Let u” be a m x 1
vector satisfied

uj = sin(pmjh) for j=1,2,---,m,

then
PP P
sin(pm(j — 1)h) — 2sin(prjh) + sin(pr(j + 1)h)
2 . .
= ﬁ(cos(pﬂh) — 1) sin(pmjh) .
rp 7

Hence, we can conclude that ), is eigenvalue of A" respect to eigenvector u?.
Clearly, A\, # 0 for p = 1,2,--- ,m, hence A" is invertible. Moreover, )\; is
the smallest value of all eigenvalues and

2 cos(mh) — 1)

/\1:?(

2 h)?
= <1 — (7;') + O(h*) — 1) by Taylor expansion
= —712 + O(h?),
so [[(AM) 7Y, = |/\—11‘ is bounded. This condition is said to be the stability
condition.
In all process of proof, we arrive at the conclusion that

consistency + stability = convergence.

Next we introduce two methods about stability analysis.

Stability analysis by the energy method

Let U and V be two m x 1 vectors, define an inner product by

(U.V) =) UV;h.
j=1



Remark. Suppose U(z) is the exact solution of BVP as following

{ u'(z) = f(z), x€(0,1)

u(0) = u(1) = 0.
Then
1 3
= ( [ 0Par)
" U2+ U2
~ hz ’+12 J) by trapezodial rule
7=0
_ 1
T2 7712 T72 T2 72 1772 72 772 2
B i+Us Us+U7 U+ U, | U +UG
= h( T e e
m 3
772
- Z jh>
j=1
=Tl in (-, ) defined above.

So our stability analysis by energy method is in a viewpoint of discrete form.

Let U be the numerical solution of BVP above and L; be a differential
operator defined by

Uj1 = 2U; + Ujn

LhUj = 72

— D™D U; = D" D'U; = F

Our goal is to show that
1
Ul < =||F|.
Il < 511#]
First we want to show that L is a self-adjoint operator i.e.
(Ly2UVY=(U,L,V) VYUV eR™
and semi-negative definite operator i.e.

(LU, UY<0 YUeR™



Given U and V satisfied Uy = U101 = Vo = Vinaa.

Ui Vi — U3V = (Uj+1 —Uj)V; + (Vi = Vy)Ujn

= Z(UjJrl Vi + Z i1 = Vi)Ujpr = Z(Uj+1vj+1 - U;V;)
=0 =0

m—+1

7=0
=Y (U = UV ==Y (Vs = V))Ujsa = = > _(V; = V;1)Uj
j 0 J=

0 j=1
V-V,
:>Z J+1 ]V:_ZJT”UJ
j=1
. <D+U7 V)y=—(U,D7V)
= (L, U,U)y=(D*D"U,U)=—(D"U,DU)<0
and
(L U, V)= (Dt*D~U,V)
—(D~U,D7V)
=(U,D"DV)
= (U, L,V)
Hence L, is a self-adjoint and semi-negative definite operator.

J
Up — Up—r
U= (Z‘ h )h

k=1

—1
- "G (U= Uil ) N = (U = Uy
RN EDIMN Cy D WM

j=1 k=1

:>HUH2 h2m(m+1 Z(Uk’_Uk 1) hf
=1

l\')

Since

ID=U]* = {LuU.U)| = KF.U)|

< |IF|IU]] by Cauchy-Schwarz inequality,

finally we have ||U]| < 1||F].

=0



Green’s functions and max-norm stability

Counsider the BVP

{ W) = f(z), 2€(0.1)
u(0) = u(1)

Integrate both side from 0 to x, we have
= / f(s)ds+u'(0)
N
F(x)
Integrate again, we have

u() — u(0) = /O " F()dt + o (0)a
() — /0 LR )t + 4 (0)z
=aF(z) — /Ox tf(t)dt + +u'(0)x
_ x/:f(t)dt— /0 EF(E)dE + o (0)a
_ /:(x — 5 f ()t + o (0).

By the boundary condition, we have
1
u(1) = u(0) = 0 / (1= )£ (6)dt + o' (0),
0

thus «/(0) = — fo (1 —t)f(t)dt. So our solution becomes

x—t /xl—t
0

/0

/O:U—t (/Oxl—t dz+/:x(1—t)f(t)dt)
:/Otx—l dt—/ll’l—t
|



- <t<
where G(z,t) = { t;(xt _ B 2 - i - ?’ which is called the Green’s function.

Since

u()] =

/O Get) f(t)dt’

< [6tw0lwh

<l [ 6, Bl
=110 forze o

1
< =
< 5l

finally we have

1
e < 11l

10



Neumann boundary condition

How to solve the equation with Neumann boundary such as

L) =t =

Using the same centered difference formula,

Uiy1 —2U; + Ui

h/2 :fz

we need the boundary value Uy, when ¢ = N — 1. How can we provide such numerical
boundary value?

Method 1:(first-order accurate)
Since /(1) = 0, =IN=t — () then Uy = Uy_,

h
I i
72 72
£oro Or v f
O R2 ! Looh2
Us fo
1 -2 1 ' '
O OB Un_1 fn-a
L R

Method 2(ghost point method):(second-order accurate)
Since v/(1) =0, Una1=Un-1 — () then Uns1=Un_1

2h
- o i
hZ B2
1 22 1 0 U, £ — u
h2 h2 h2 h?
Us fa
1 -2 1 ’ ;
N Un In
0 3 2
L h2 h2 A

Compact difference scheme

Now we will introduce a compact (three-point stencil) fourth-order accurate method for
the model problem. Here, we give some difference notation

i+1 — U d
Soup = L= 5w =20 L O(A), O(Ax) < CAx
h dx
U; — Uj—1 du
= T s O(AR). O(Ar) < CA
d_u; P d_u dx+0( z),0(Az) < CAx

11



oy = Zg + O(A?), 0(AT?) < CAZ
U; — 2U2 + u;— d2
(Szui = +1 h2 1, 5271, W -+ O(ACE )

Next we will find a better method(4-th order method) to solve the problem,

u'=f wu0)=u(l)=0

u”(xi)h2 u’”(azi)h?’ U/m<$l')h4 N u(5)(xl)h5

w(x;+h) = u(x;)+u' (z;)h+ YR TR AT g +0(h%)...(1)
S P i o A L U L O LT NS
(1)+(2)
u(z; + h) —2u(x;) +u(e; —h) u™ (x;)h? A
72 —U(SE@)—FT—FO(h)
2 72
= o I o) = o+ g+ o)

Since dl];’ = 6%f + O(h?), we then have

Uip1 —2U; + Ui — 4 h? fix1—2fi + fima _ fir1 +10f; + fiza
h? 12 h? 12

. The resultant linear equations has the form

-2 1
1 -2 1 Ui Jo+10f1 + fo
Us | h? Ji+10fa+ f3
ol 12 :
=21 Un-1 fn—2+10fn_1 + fNn

This is called 4-order compact scheme which involves solving the same tri-diagonal linear
system as the second-order centered difference method.

12



3 Finite difference method for 1D Parabolic equa-
tion

Now let us consider the numerical method for 1D heat equation.

w(0.0) = (L f) = 0
u(x,0) = f(x)

This equation serves as a model problem for the finite difference scheme of the parabolic
equation. Since the problem is simple enough, one can write down the exact solution
immediately.

% 1
u(z,t) => ane” " ginnra, where  a, = 2/ f(z) sinnrzdz
n=1 0

The solution of heat equation satisfies the following properties
(1) Energy dissipation

1 1
/ uwdr = / Uy AT
0 0

d rlu? 1 1
7)o % = /0 uumda::uuxhl)—/o Uy Uy dT
d rlu? L,
T e d
= dt Jo 2 /0 Ua
14,2 t 1 £2
;»/u(x’)d;cg/f@)dx
0 2 o 2

(2) Maximum principle(extreme value only occur on boundary or initial conditions)
Proof: Suppose not, for example, the maximum occurs at (zo, t), then we have

{ Ut(l'o,to) >0

= don’t satisfy w; = u,,.
Uxx<£ll'0, to) <0 Y t e

Thus, this leads to a contradiction.

3.1 Explicit scheme

Define the mesh points or gird points as

1
xj:jA:c,tn:nAt,j:O,l,...N,A:U:N.

13



We seek approximation of the solution at those mesh grids i.e Ul = w(xj, ty)

ou(z;,tn41) oulwy, b, + At) — u(zj,t,)

TR At
_— 0%u - w(xj + Az, t,) — 2u(z;, t,) + u(z; — Az, t,)
2 Ax?
uptt —ur _ Uy — 207 + U
At Az?
At
n+1 n n n n
At
= (1-28)U}" + BU}, + BU} |, where = A

U) = f(z;) initial condition.

Uy =Ux =0 boundary condition.
Note that this scheme is the first-order accurate in time and second-order in space, since
the truncation error is O(At) + O(Ax?)

u(wy, ty + At) —ulxy tn)  ulw; + Az, ty) — 2u(zy, ty) +u(z; — Az, t,)
At Ax?

T(z,t) =

Exercise: Write a matlab program to solve the 1D heat equation using the above

scheme with
2x,

o=, o

Choose two different At, At = 0.0012 and At = 0.0013, you will find they lead to two
different results.

= O

1
2 N=20, Az = 0.05

IAIA

<z
<z

From the above numerical experiment, we simply observe that when the time step
At = 0.0012, the computed solution becomes very large in a few time steps and soon the
result becomes overflow. This has something to do with the stability of the method. In
other words, in order to have a successful computation, one must choose the time step
carefully. Let us pay another visit about this situation.

f(x) = ecos g, flaj) = GCOS% = ecos jm = ¢(—1)

Ut = (1=28)U7 + BU,, + BUS,, Uy = e(=1)
Uy = (1= 28) e(=1) + Be(=1)7*! + Be(-1)~
U = (1 —4B)" e(=1)

14



|f(@)] = |u(z,0)] < e

By maximum principle we have |U?| < e. So if
1
]1—45|§1=>B§§,

we can have such bound for [U'|. However, if it is violated, then the solution is growing
without bounds so we are unable to obtain a reasonable solution. The above constraint
is called the stability constraint.

Convergence of the explicit scheme

Truncation error analysis

u(wy, tn + A) —ulxy, tn)  u(z; + Az, t,) — 2u(wy, t,) +u(z; — Az, ty)

m(@.t) = At A
At?
u(z, t+ At) = u(x,t) +uAt+ utt(x;)
w(z 4+ Az, t) = u(x,t) +u Az + Qoo 4 2 T | Yara(b1 A2
2! 3! 4!
uwamz uaca:achS u:cx:m:(f% t)Al’4
u(lr — Az, t) = wu(z,t) —uAx + ST a 1
N u(z; + Az, t,) — 2u(zy, t,) + u(z; — Az, t,) Cwat Upgaa (&, 1) Az?
Ax? 12

then
ug(z, Q) At B Upgae (&, 1) Ax?

_ 2
T(x,t) = 5 s . O(At) + O(Azx*)
MuAt Moo Ax? At 1 At
< = — — -
’T(I, t)| ~ 2 + 12 2 (Mtt + 66erwx)7 B Al‘2’

where My, is a bound for |uy| and M,.., is a bound for |u;...|. For a fixed ratio S,
|7(x,t)| behaves like O(At) as At — 0 i.e. |7(z,t)| — 0 as At — 0.

Definition: We say that a scheme is convergent if for any fixed point (z*,¢*) in the
domain (0,1) x (0,7) as x; — 2%, t, — t*, we have U}' = u(x;,t,).

Theorem: If g < %, then the explicit scheme is convergent.

Proof: We denote e by the error U — u in the approximation e} := U} — u(x;,t,).
Claim :

et = (1 —20)e) + Be,, + el | — 1) At
le"lso = {lejl, i =0,1... N}

15



If 8 < %, then
[ < 1= 2B)l[€f] + Blefial + Blef | + At
€] < (1= 28)][|e" oo + Blle™ oo + Blle™ 10 + |7 AL

then
e loo < [l€"[|oo + TAE < [[€"H|oo + 27AE

le"[loo < [l€”]loe + nTAE
Since € = 0 is the initial data,
At 1

2( tt+65 )

le™lloo <

as At — 0 we have ||¢"]|» — 0.
Note that we have here required that these bounds My and M,,,, hold for uniformly
on the whole region (0,1) x (0,7).

von Nenmann analysis

. kA
Uy = g"e™ 0, g(k) = 1 - 4Bsin® ==

where g(k) is the amplification factor. Need |g(k)| < 1+ K'At or |g(k)| < 1.

Theorem(von Neumann condition): A necessary condition for stability is that there
exists a constant K’ s.t

lg(k)] <1+ K'At for all k and nAt < T .

3.2 First-order implicit scheme

The stability limit At < AT’UQ is a very severe restriction for the explicit scheme, we now
find other difference scheme to avoid such restriction.
Let us replace the explicit scheme by

n+1 n n+1 n+1 n+1
At Ax?
Un+1 . Un _ At Un+1 . 2Un+1 Un—l—l
i i = ApzUin ;UL

(1+28)U7" = U+ UM + UM

16



= —BUI + (1+28)UH — BUIH = U7

Uyt = Upt™ =0 are boundary condition.

At each time step, given U, we need to find U]“l. This involves solving a tridiagonal
linear system of equation for U j”“ i.e Av = b where

[ 1+28 —p ) "
-3 1428 -p ur Uy
Un+1 Un
A: V= 2‘ b: ‘2
-8 1+28 —p Unth U,
I -8 1+28 |

Next we use maximum principle to check if we have avoided the restriction
(L+28)U* = U + pUMH + pUH
(1+ 28|07 < [UF| + BIUSE + BIUTH
L+ 20107 oo < MU loo + 281U oo

= [U" oo < U]l

Question: Why maximum principle is relevant to established stability?
(1 4 2ﬁ)gn+1eijkAx — gneijkAx + Bgn+1€i(j+1)kAz + ﬁgn+1€i(j—1)kAz

(1428)g = 14 Bge™ + Bge= 7
1
1+ 4B sin® k2=

Since |g| < 1 therefore this method is unconditionally stable.

g(1+2p —2BcoskAzx) =1 then g=

3.3 Crank-Nicholson scheme

du UTH-l —u" 1 n+1 n 2
E—f(u), T—§(f(u )+ f(u")) + O(dtd”)
urtt—ur o1 urt -urtt v Uttt Ur, - 20 +UR
J Jj o S g+1 J j—1 Jj+1 J j—1 s 2 2
Aol A’ * Ax? )~ O(AT) + O(A')

This is a second-order in time and space method.

Again, we need to solve a tridiagonal linear system using eg. Thomas algorithm.

17



The Thomas algorithm

If
—CLjUj_l + bjUj - CjUj—l = dj, j = O, ]_, ... with Uo = UN =0

we assume that a; >0, 0; >0, ¢; > 0 and d; > a; + ¢;.
The matrix is diagonally dominant and suppose that the first k equations have been
reduced to

Uj—erj+1:fj, j:1,2,7k'
The last equation is Uy — e U1 = fi
— 41U + py 1 U1 — o1 U2 = dia

It is easy to eliminate Ug from these equation, giving a new equation involving U,
and Uy4o,

U Ch+1 ~dpg + agy fr
= k+1 — b—Uk+2 - b—
k+1 — Qp+1€k k+1 — Qg4+1€k

=%

€ bj—ajej_1

N

Y

f = ditalioa g 9

bj—aje;_1’
And Uy =0for 7 =0,y = fo =0.
Use these recurrence relation to find the coefficients, the value of U; are easily obtained
by beginning the operation values Uy — Uy, — Un_2... — Uj. Operation counts is
O(N) operation.

Maximum principle

Ut Ut unr unr
(1+B)U;1+1+ﬁU;1:U;1+ §+1 +ﬁ é—l +ﬁ 23+1 +ﬁ 2]—1

If 5 <3

n n B n B n B n 6 n
(1+B8)|U; < - B)|U}| + §‘Uj++11’ + E‘Ujjlly + §|Uj+l‘ + §|Uj—1’

L+ AU < BIT™ oo + 10U [loo
= (L+ BT oo < BT oo + U] oo

Hence ||[U" || < [[U ] o

18



von Neumann analysis

U,”‘H U,”‘H Un Un
(1 + ﬁ)UJn‘i’l - 6 5+1 . /8 5—1 — (1 . 6)U]n + /8 2j+1 + 6 2]—].
ikAx —ikAx ikAx —ikAx
(14 By~ P90 POy AT
2 2 2
kAx kAx

= g(1 + 28 sin? T) =1 — 283sin? -

1 —2fsin® 552

= = <1.
g 1+2681n2k§—"” 91 <
Therefore the scheme is unconditionally stable.
3.4 The weight average method
n+1 n n+1 n+1 n+1 n n n
At Ax? Ax?
0 = 0 explicit scheme
# = 1 first-order implicit scheme
1
0 = 3 Crank-Nicholson scheme

If5(1-6) < %, then the maximum principle holds. The maximum principle means that
maximum norm stable.

More general boundary condition

gz = o(t)u, «ft)is given at x =0
upr - Uy
e U
= UJ(1+a"Az) = U}
n_ Ul
= U= (1+ amAx)

19



More general linear problems

ou 0%u

pr a(:c,t)@, a(z,t) >0
Explicit scheme
n+1 n n n n
U™ = U7 _ nUin =207 + U
2At J Ax?

Uit = Uj' + paj Uy = 2U7 + UjLy), - where aff = a(g;, t)

. . . . n 1
Maximum principle if 3 maz|a}| < 3.

20



4 The 1D convection-diffusion equation

U + AUy = Vg,
Forward time central space scheme

n+1 n n n n n n
Um0, Ui o U Ui — 207+ U

At “TToAx Az

A A
[l — (1— QB)UJTL + (B — §)U}1+1 + (B + 5)[]][1

At At
where \ = a—, p = U2 and A CFL(courant-Friedrich-Lewy) condition.
Ax Ax?

The scheme satisfies the maximum principle if A <25 <1
n+1 n /\ n /\ n
\U; |S(1_25)‘[]3'|+(ﬁ_5)‘Uj+1’+(6+§)‘Uj71’

Hence ||[U" || < [[U"||oo. That is, we have

2UAL alAt  2uAt

T I

Ax? — Ax — Azx?
alAx

2
= Re=—-<2 Ax< —V, where Rc is cell Reynolds number.
v a

Re < 2 is rather severe on the mesh width when v is small. This is called the cell
Reynolds number constraint. This causes the consequence that the time step must be

chosen as Ap A )
A<, Z—gl, At < 28 2

x a a?’
This explains why the forward time central space for u; + au, = rvu,, is unstable when
v=020.

von Neumann analysis

kA kA
g(k)2] <1 — 4(28 — A?) sin? ?“” +4(48% — ) sin’ Tx

Thus, we need \2 <28 <1

(aAt)z < 2UAL N 2v
Ax’ = Ax? ~ a?
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So we can summarize the stability constraint of the explicit scheme for linear convection-
diffusion equation is

Now suppose we treat the diffusion term implicitly, and keep the convection term
explicitly. The von Neumann analysis gives the amplification factor,

1 + 4)\2%sin? ké—‘” cos? MTI

(1+4p sin? %)2

lg(k)?|
The stability condition is
2 2 2v
(k)" < Tif A" <28 = At<—.
a
So the constraint derived from the cell Reynolds number constraint remains even thought
we discretize the diffusion term implicitly. That is the reason why at high Reynolds

number flow, most of stability problems come from the convection term, and the diffusion
term does not help too much to stabilize it.
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5 Hyperbolic equation in 1D

The simple 1D linear advection equation is written as

U + au, =0
u(z,0) = up(x), —oo<z<o00,x>0

The method of characteristics: The characteristics are the solution of the ordinary

differential equation ¢ = ¢ and along a characteristic curve the solution satisfies
dt

du(x(t),t) 4B N 0
— T = Uy Up— = U+ AUy =
dt A
This, the characteristics are curve in the x — ¢ plane satisfying the O.D.E 2/(t) =
a, x(0) = zo and the solution wu is constant along these characteristics. More gen-
erally u; + (a(x)u), = 0 where a(z) is a smooth function.

u + a(z)u, = —d'(z)u

= (5t ala) = —d (@)

It follows that evolution of u along any curve x(t) satisfying

"(t) = d t),t

lt) = a(a(t)) satisfies a simple O.D.E du(e(t).1) = —ad'(z(t))u(z(t),t)
z(0) = o, dt

In this case, the solution u(z,t) is not a constant along these curve, but can be easily

determined by solving two sets of O.D.E .
Two ideas need to be mentioned: Domain of dependence and Range of influence.

Hyperbolic conservation law: wu; + f(u), = 0 where f(u) is a nonlinear function of
u. We will assume that f(u) in convex function, f'(u) > 0 for all u. The convexity
assumption corresponds to genuine nonlinearity.

u2

inviscid Burgers equation:  w; +uu, =0 f(u) = 5

viscous Burgers equation:  u; + ut, = €y,

This is the simplest model that includes the nonlinear and viscous effects of fluid dy-
namics. The viscous Burgers equation can be reduced to linear heat equation
via Cole-Hopf transformation.

Now consider the inviscid Burgers equation with smooth initial data. For small time,
a solution can be constructed by the method of characteristics. It looks like an advection
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equation, but with the advection velocity u equation to the value of advected quantity.
The characteristics satisfying % = u(xz(t),t) and along each characteristic u is a constant
since Lu(x(t),t) = % + %N — 4y + yu, =0

Moreover, since u is constant on each characteristic, the slope 2/(t) is constant, so
the characteristics are straight line determined by the initial data. If the initial data is
smooth, then this can be used to determined the solution u(z, t) for small enough time ¢,
that characteristics don’t cross. For each (z,t) we can solve the equation x = £+ u(&,0)t

for € and then u(z,t) = u(¢,0).

Formation of shock

Counsider the initial data
u(z,0) =1, =<0
0, x>0

Along the characteristic % = 1, the solution u(z,t) = 1, but along the characteristic

% = 0, the solution wu(z,t) = 0. Thus, the characteristics cross, and the wave breaks.

That is, the discontinuous solution occurs and shock forms.

Question: How to determine the solution when this is happening?
Jump condition + entropy condition

1, z<st 1.
u(z,t) = { 0 z>st =3B shock speed.
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6 Fast Poisson solver in polar coordinates

Many physical problems involve solving elliptic equations on polar or cylindrical do-
mains. The first step is to transform the rectangular coordinate system into the conve-
nient polar or cylindrical coordinates. Thus, we can rewrite the governing equations in
those new coordinates. Let us consider Poisson equation on a unit disk Q = {(z,y) :
% +y? < 1},

0?U  9*U )

2z T - F inQ, (3)
with the Dirichlet U = G, or the Neumann g—g = (G boundary conditions on 0f2.

Applying the polar coordinate transformation, x = rcosf,y = rsinf, where r =
V22 +y? and 0 = tan~!(y/x), and setting u(r,0) = U(r cos6,rsin @), f(r,0) = F(r cos,rsinf),
and ¢(f) = G(cos@,sin @), then Eq. (3) becomes

Pu  10u 1 0%u
or? + r or * r2 00?
with u(1, ) = g(¢) (Dirichlet), or 2%(1,8) = g(#) (Neumann).

Eq. (4) has an apparent singularity at the origin » = 0. It is important to realize
that the cause of singularity is due to the representation of the governing equation in
polar coordinate system. Thus, the solution itself is no way singular at the origin if f
is smooth enough. In order to have the desired regularity and accuracy, the traditional
finite difference scheme uses a uniformly integered grid with some condition at the origin.
This pole condition acts as a numerical boundary condition at the origin which is needed
in finite difference scheme. However, from the rectangular coordinate point of view, there
is no need to impose any conditions.

In the following, we will present a finite difference discretization for Eq. (4) which is
second-order accurate without imposing any pole conditions.

=f(r,d) 0<r<1,0<6<2nm, (4)

Finite difference discretization

Let us first consider the Dirichlet boundary problem. We choose a grid which the grid
points are half-integered in radial direction and integered in azimuthal direction, that
is,

1
r=li-g)Ar 4= -1)Af 9
where Ar = 2N2+1,A9: 2Mﬂ,andi: 1,2,....,N+1;7=1,2,..., M+1. Note that, by the

choice of the radial mesh width, the boundary values are defined on the grid points. Let
the discrete values be denoted by w;; ~ u(r;,0;), fi; = f(r:,0;), and g; = g(6;). Using
the centered difference method to discretize Eq. (4), for i =2,3,...,N,j=1,2,..., M
we have

Uit1j — 2Uj5 + Uiy i lUiJrl,j — Ui-14 iuz’,jﬂ — 2w+ Ui
(Ar)? T 2 Ar 2 (AB)?

= fij- (6)
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Among the above representations, the boundary values are given by uyi1; = g;, and
Ujo = Ui M, Wit = Ui p+1 Since u is 27 periodic in 6.
At i =1, we have

Ugj — 2U1j + Up; lUQj — Upy lul,j-i-l —2 U + Up,5-1
(Ar)? r o 2Ar r? (AB)?

= fi- (7)
Since r; = 47, we immediately observe that the coefficient of ug; in Eq. (7) is zero. It
turns out that the scheme does not need any extrapolation for ug; so that there is no
pole condition needed.

Let us order the unknowns wu,; by first grouping the same ray then moving counter-
clockwise to cover the whole domain. Thus, the unknown vector v is defined by

Uy Uzy
Uz Ugj

v=1 . |, u; = C- (8)
Upnr UN

The remaining problem is to solve a large sparse linear system Av = b, where A can be
written as ,

T-2D D D
D T-2D D

D T-2D D
D D T—-2D

where D = diag(ﬂ]_,ﬁg, c. ,BN) with 51 = m, 1 S 1 S N, and

-2 1+X)
1—X -2 14X

T = S o)
1— Ayt -2 1+ Anvg
I 1— Ay -2 |

with \; = Wll/Q)’ 1 <4 < N. The known vector b is defined by

b1 (A’I“)Z flj

b | b : (11)
’ g (AT)2 fol,j
bu (Ar)? frj — (1 + An)g;
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Scaling the matrix A by the block diagonal matrix with block sub-matrix D=, the
remaining linear equations can be solved by the famous cyclic reduction algorithm in
O(N M log N) arithmetic operations. The matrix from the traditional finite difference
scheme on a uniformly integered grid with the pole condition involves finding extra
approximation at r = 0 which has one more row and column than A; thus, it cannot
be solved directly by the Buneman algorithm. Although, our new scheme does not
reduce significant amount of operation counts, the matrix of the new scheme has more
succinct form than the traditional one. Furthermore, the discretization used here can
be applied directly to the Helmholtz-type equation by just adding more terms in the
diagonal part of the matrix A. The Helmholtz-type equation has applications from the
numerical integration of time-dependent heat equation, reaction-diffusion equations, and
fluid equations.

For the Neumann boundary problem, the grid points are located in the same way
as the Dirichlet problem. The slight difference is the choice Ar = % With this choice
of radial mesh width, the discrete values of u are defined midway between boundary so
that first derivatives can be centered on the grid points. That is, at r = 1,

@ ~ UN+1,5 — uNj' (12)
or Ar

So the numerical boundary values uy41; can be approximated by uy;+g¢;Ar. Therefore,

we only need to modify 7" by

-2 14N
1—X =2 14X

1— Ay -2 14+ Ay
1=y —1+Ay |

and b; by
(Ar)? fi

b, = : 14
j (AP s (14)

(Ar)? faj — (14 An) g5 Ar

It is important to note that the grid used for the Neumann problem turns out to be the
popular staggered grid used for most of Neumann boundary problems [?].
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7 Another simple FFT-based fast Poisson solver in
polar coordinates

Let us consider the Poisson equation on a unit as in Eqn. (4) with the Dirichlet boundary
value u(1,6) = g(d), Neumann boundary value 2%(1,6) = g(f), or the mixed Robin
boundary condition 2%(1,6) + au(1,6) = g(6), a > 0.

For the Neumann problem to have a solution, it is necessary that f satisfies the
compatibility condition,

/02” /Olf(r, 0) rdrdo = /02”9(9) do. (15)

7.1 Fourier mode equations

Since the solution u on a disk is periodic in 0, we can approximate it by the truncated

Fourier series as
N/2-1

u(r,0) = > (1) €M7, (16)

n=—N/2

where w,(r) is the complex Fourier coefficient given by

1 N—
N Z:: 75 (17)

and 0; = 2jm/N, and N is the number of grid points along a circle. The above transfor-
mation between the physical space and Fourier space can be efficiently performed using
the fast Fourier transform (FFT) with O(N log, V) arithmetic operations.

Substituting those expansions into Eq. (4) and equating the Fourier coefficients, u,,(r)
satisfies the ordinary differential equation

P, 1du, n?

—— = U, = fn, O0<r<l1, 18
dr2+rdr r2u / " (18)

with the Dirichlet boundary condition w,(1) = g,, the Neumann boundary condition
ul,(1) = gn, or the mixed Robin condition /(1) + au,(1l) = g,,a > 0. Here, the
complex Fourier coefficients f,(r) and g, are defined in the same manner as Egs. (16)-
(17). Eq. (18) is a singular equation in which the singularity occurs at the origin r = 0.

So far, the approach is in common with the spectral or pseudospectral methods.
Next, we will introduce both second- and fourth-order finite difference discretizations
to solve Eq. (18) without imposing any pole condition. The resulting linear system
has a banded diagonal coefficient matrix. The inversion takes only O(M) operations,
where M is the number of the discretization points. The implementation of the present

scheme is much simpler compared to the spectral methods which need to impose some
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pole conditions and also involve the fast cosine transform of O(M log, M) operations for
solving Eq. (18). Nevertheless, the present scheme has roughly the same total computa-
tional costs (O(N M log, M) operations, including the costs of FFT in the beginning and
the end) as the spectral methods. Besides, our finite difference scheme can be applied
to different boundary including Dirichlet, Neumann and Robin problems without any
difficulty.

7.2 Second-order method

Using a grid described in [?, 4] to avoid evaluating the value at the origin, we place the
grid points at
ri = (i—1/2) Ar, 1=1,2,...M,M + 1, (19)

where the mesh width Ar will be specified later. From now on, we denote the discrete
values U; = u,(r;) and F; = f,(r;).

First, we introduce a second-order centered difference scheme for the solution of
Eq. (18) with the Dirichlet boundary value w,(1) = g,. We choose the mesh width
Ar = 2/(2M + 1) so that ry; = 1, and the grid points are defined at the boundary.
Applying the centered difference method to Eq. (18), we obtain

U —2U;+ Uiy 11Uy — Uiy 0?

(Ar)? i i 2Ar ri? Ui= £ (20)
This is a tridiagonal linear system of equations for U;,7 = 1,2, ... M, which can be solved
by O(M) arithmetic operations. In order to complete the linear system, the numerical
boundary values Uy and U,y should be supplied. When ¢ = 1, the coefficient of Uy in
Eq. (20) equals to zero since r; = Ar/2; thus, no approximation for Uy is needed. The
other value Uy, is given by the boundary value g,. Note that, in [3], the author used
the same scheme as (20) on an uniform grid without shifting half mesh so that some
approximation at the origin is needed. It turns out that the matrix of the linear system
is not as succinct as the one obtained from our approach.

For the Neumann (o = 0) or Robin boundary problem, we still use the same grid
described in (19) but with different choice of Ar = 1/M. With the choice of this mesh
width, the discrete values of u are defined midway between boundary so that the first
derivative can be centered on the grid points. This means, at » = 1, we have the
approximation

@+au~ U1 — Uy +aUM+1+UM -
or - Ar 2 = Jn-

Therefore, the numerical boundary value Ujy;11 can be obtained in terms of Uy, and g,,.
It is worth mentioning that the existence and uniqueness of the solution to Poisson
equation with Neumann boundary can be explained by considering the zeroth Fourier

mode equation

(21)

d2U0 ].dUO
dr? + ;W = fo, O<r< 1, ug(l) = (o. (22)
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It is obvious that if the solution of the above equation exists, it is unique up to a constant.
The existence of the solution is guaranteed by

/01 fo(r)rdr = go, (23)

which is an equivalent form of Eq. (15). The discrete analogue of (23) can be written as

M
> fo(ri) ri Ar = go. (24)
i=1

One should also note that the tridiagonal linear system resulting from the discretiza-
tion of the zeroth Fourier mode equation is singular. If the discrete constraint (24) is
satisfied, then the right-hand side vector falls into the range of the resulting matrix.

Using Gauss elimination with pivoting, a zero pivot element is found for the last entry

1 = M as well as the corresponding right-hand side of the zero pivot equation. The

last element of the solution vector can be assigned to any value. This is the descrete

analogue to the nonuniquess of the solution of the Neumann problem.

7.3 Fourth-order method

In this subsection, we use the same grid given in Eq. (19) with the choice of Ar =
2/(2M +1). Before introducing the fourth-order scheme, we first write down the fourth-
order five point difference operators for the first and second derivatives as

ul(ﬁ-) _ — Uiy + 8U11_; ;fui—l + U2 + O((AT)4), (25>
0+ 16Uz 41 — 30u; + 16U, — U,
W) = R 0l (20)

The above approximations are defined at the interior points. For the boundary points,
we use the following one-sided difference formulas given in [?]

3 10 — 18 6un 1 — Ups—

Ul<7"M+1) _ Upr+2 + 10upr41 12Alb;\/[—|— Upf—1 — Up—2 +O((AT)4), (27)
11w — 20u + 6unr +4upr—1 — up—

W) = Sy Tolanh. e8)

Now let us discretize Equation (18) using the fourth-order difference operators given
in (25)-(26) at the interior points i = 1,2,..., M as

—Uiyo + 16U — 30U; + 16U;—1 — Ui " —Uiyo +8Ujp1 — 8Uj—1 + Ui
12 (Ar)? 127; Ar

2

n
- U =F,.

rA

C(9)
This is a pentadiagonal system for U;. Solving (29) is a little more expensive than solving
a tridiagonal system, but it still needs only O(M) arithmetic operations.
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Numerical boundary value

Again, in order to complete the system, we need to supply numerical boundary values
such as U_1, Uy, Upriq and Upyio. The inner numerical boundary values Uy, U_; can be
easily found by the symmetry constraint for polar coordinates as

Q

Uo
U

Un(r0) = Up(—Ar/2) = (=1)" u, (Ar/2) = (—=1)" Uy, (30)
Up(r-1) = up (=3 Ar/2) = (=1)"u,(3Ar/2) = (—1)" Us. (31)

Q

The derivation of symmetry constraint is as follows. Let us first consider the trans-
formation between Cartesian and polar coordinates as

x =rcosb, y =rsiné. (32)

When we replace r by —r and 6 by 6 + 7, the Cartesian coordinates of a point remains
the same. Therefore, any scalar function f(r, ) satisfies f(—r,0) = f(r,0 + 7). Using
this equality, we have

o0 oo [e.e]

f=r0)= 3 au(-r)em™ = 3 a,(r) e = 3 (=1)"a,(r) ™.

n=—0o0 n=—oo n=—oo

Thus, when the domain of a function is extended to negative values of r, the nth Fourier
coefficient of this function satisfies

an(—r) = (=1)"an(r). (33)

The outer numerical boundary value Ujy;.o can be obtained as follows. By requiring
the equation (18) to be hold at the boundary 7,41 = 1 as well, we deduce

Un (rar1) + U (Tarn) = 02 (o) + fo(rare). (34)

Substituting the one-sided difference formulae (27)-(28) into the above equation, we ob-
tain a formula for Uysyo in terms of Upsy1, Ups, Upr—1, Upr—2 and Fy4q. For the Dirichlet
problem, the value Uy is known. As to the Neumann or Robin boundary, an approx-
imation of Uy;,; can be derived using the one-sided difference formula (27).

Summary:

Let us close this section by summarizing the algorithm and the operation counts in the
following three steps:

1. Compute the Fourier coefficients for the right-hand side function as in (17) by FFT,
which requires O(M N log, N) arithmetic operations.

2. Solve the tridiagonal (2nd-order) or pentadiagonal (4th-order) linear system for each
Fourier mode. This requires O(M N) operations.
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3. Convert the Fourier coefficients as in (16) by FFT to obtain the solution, which
requires O(M N log, N) operations.

The overall operation count is thus O(M N log, N) for M x N grid points. The
method can be easily extended to the Helmholtz-type equation in a straightforward
manner.
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Immersed boundary method

Mathematical formulation:
» Treat the elastic material as a part of fluid
» The material acts force into the fluid

» The material moves along with the fluid

Numerical method:

Finite difference discretization

v

» Eulerian grid points for the fluid variables
» Lagrangian markers for the immersed boundary
>

The fluid-boundary are linked by a smooth version of Dirac delta
function

Review: C.S. Peskin, Acta Numer., 11:479-517, 2002



Numerical issues of IB method

» Simple and easy to implement

» Embedding complex structure into Cartesian domain, no
complicated grid generation

» Fast elliptic solver (FFT) on Cartesian grid can be applied
» Numerical smearing near the immersed boundary

» First-order accurate, accuracy of 1D IB model (Beyer & LeVeque
1992, Lai 1998), formally second-order scheme (Lai & Peskin
2000, Griffith & Peskin 2005, Griffith et al 2007), Immersed
Interface Method (ITM, LeVeque & Li 1994)

» High-order discrete delta function in 2D, 3D

» Numerical stability tests, different semi-implicit methods (Tu &
Peskin 1992, Mayo & Peskin 1993, Newren, Fogelson, Guy &
Kirby 2007, 2008)

> Stability analysis (Stockie & Wetton 1999, Hou & Shi 2008)
» Convergence analysis (Y. Mori 2008)



Mathematical formulation

Consider a massless elastic membrane I' immersed in viscous
incompressible fluid domain 2.

T: X(s,t), 0<s<1ILy Ly: unstressed length



0
p(attt-k(u-V)u)—i—Vp:uAu—Ff
V-u=0

_f(:c,t):/FF(SJ)(S(:B—X(s,t))ds
oxn) u(X(s,t),t)z/

u(x,t)d(x — X (s,t))dx
Q

0 0X 0X /0s
F(Sat)*a(T"'), T*U(g ;8,t), *m
FLUID BOUNDARY
u(x,t) :  velocity X(x,t): boundary configuration
p(x,t): pressure F(xz,t): boundary force
p: density T : tension
W viscosity T

unit tangent



Jump conditions, LeVeque & Li 1997 (2D), Lai & Li

2001 (3D)

Theorem (1)

The pressure and the velocity normal derivatives across the boundary

satisfy
F.-n
[p] = 09X /0s]
[u] =0,
ou F.-r
g {an] ~ T jox/os|”

Theorem (2)

The normal derivatives of the pressure across the boundary satisfies

K F.r
[ap] 9s \ |0.X /05|

on| ~  |0X/0s]



A test example with known solutions

%l:—i—(u~V)u—|—Vp:Au+f+g
V-u=0
fe / F(s,0)5(z — X (s,1))ds
N
XD X (s0.)

Q =10,1]x][0, 1], I'={(X(s),Y(s)) = (0.5cos 5,0.5sins),0 < s < 27}

0X
0s

n = (coss,sins), T = (fsins,coss)

=0.5




et (2y—Y) r>05 ou
u(x,y,t) = , — | =2e7tsins
S {0 r <0.5 on
et (-2z+2%) r>05 [ Ov ]
Y, t) = r , — | = —2e"tcos
vi@y,?) {0 < 0.5 an ¢ coss
0 r>05 [ Op ]
) at = ) | =-1
P(:9,%) {1 r<0.5 on
et (¥ —2y—Z)+e 2 (2 —4r— %) r>05
gl(x,y,t): (r Y 7’3) (r 2)
0 r <0.5
—e (T -2~ Z) e (W 4y %) r>05
92(93,y,t): (r r3) (r Y 2) =
0 r <0.5
Fp=-05 Fy = —0.5coss — e 'sins [g-n]=0

Fr=e¢t Fy = —0.5sins+e ‘coss



Numerical scheme

FLUID-Eulerian BOUNDARY-Lagrangian
N x N lattice points & = (ih, jh) M moving points X

u" =~ u(x,nAt), U ~ u(Xy,nAt)

"= f(x,nAt), r o~ F(X g, nAt)

p" = p(x, nAt),



How to march (X", u") to (X" w"t1)?
Stepl Compute the boundary force

mn n n DSXn mn n
Tii10 = 0(IDs X%D)s Thyre = ﬁ7 Fii = Ds(T7)p11 2,

where T}, , and 77, /, are both defined on s = (k + 1)As, and
F} is defined on s = kAs.

Step2 Apply the boundary force to the fluid
=Y Fpon(z— X})As
k

Step3 Solve the Navier-Stokes equations with the force to update the
velocity

n+1l _ 2
P (u _"_ZunDi n) — _DOpn+1 +MZD¢+D;UM—1 + fn’
i=1

DO .yt =,

where T}, , and 7}, /, are both defined on s = (k + 1)As, and
F} is defined on s = kAs.



Step4 Interpolate the new velocity on the lattice into the boundary
points and move the boundary points to new positions

Uptt =Y untlo,(x — X7)h?
T

X = X0+ AUt



Discrete delta function oy,

On(x) = 0n(x)dn(y)
1. &, is positive and continuous function.
2. dp(x) =0, for |x| > 2h.
3. 225 6n(z; —a)h =1 for all a.
(X dnley—a)h= 3 dn(z;—a)h=73)

j even j odd
4. Zj(xj — a)dp(z; —a)h = 0 for all a.
> (On(z; — a)h)? = C for all o
(32, On(zj — @)dn(z; — B)h? < O)
Uniquely determined: C' = %.

ot

L 3—2|3:|/h+\/1+4|ac|/h—4(|ac|/h)2) x| < h,
o (522l /h— =T+ 12[al A= 4(al /R)2) h < o] <20,

otherwise

(5h(.’b) = 7

S



Poisson equation with jump discontinuities

Au(x) = f(x), in Q,

e =) |5 @ =an@ar.
u(x) = up(x) on 09,
where the jumps [u] (s) = ut —u~ and [2%4] (s) = % — o

Motivation: Applying the projection method to solve the immersed
boundary models



Different approaches

ot

. Peskin’s immersed boundary method (1972): rewrite the

equation by adding a delta function source on the righthand side
when gy = 0. Approximating the delta source by the usual
discrete delta function gives first-order accurate results.

. A. Mayo’s method (1984): incorporating the jumps in Cartesian

directions, dimension by dimension approach

> Fast Poisson solver on irregular regions
» Rapid evaluation of volume integrals of potential theory

. LeVeque & Li’s immersed interface method (1994)

» Elliptic equations with discontinuous coefficients and singular
sources
> Stokes (LeVeque & Li 1997) and Navier-Stokes (Li & Lai 2001)
with interfaces, many applications
Russel & Wang’s method (2003): incorporating the jumps in
normal directions

. Li, Wang, Chern & Lai (2003): removing the singularities by

normal extension



Figure: Irregular points and their stencils.

Idea:
1. Embedding the interface/irregular domain into a regular
Cartesian domain so a fast direct Poisson solver can be applied
2. Incorporating the jump conditions into finite difference
discretizations. The modification depending on the jumps only
appear at those irregular points

{Ahu =f+C Question: C, =7

U‘BQ 1S given.



Finite difference corrections— 1D case

Lemma: Let u(x) be a piecewise twice differentiable function.
Assume that u(x) and its derivatives have finite jumps [u], [u,], and
[uzz], at * =z + ah, —1 < a < 1, then the following relations hold:

u(z +h) —u(z—h) u'(z) + C(;;La) +0(h?), ifa>0,
" ' (2) — % +O(R?), ifa<o,
u(x +h) — 2u(x) +u(w —h) u(z) + C(,f;a) +O(h), ifa>0,
" u’(x) + é(;;a) +0(h), ifa<o0,
where
Cw.0) =[]+ ] (1 — o) g Lm0
Clwa) = [l fug) (1~ o) b+ ] L1

2 )



Proof: First, we assume that 0 < o < 1. Therefore, x — h and z are
on the same side while x + h is on the other side. We use the Taylor
expansion twice for u(x + h) at *, then at x, as follows,

u(lx +h) =

_|_

+ o+

Thus, we have

u(z* 4+ (1 — a)h)

—o)2R2
wt (@) +uf (@)1 - a)h + u;ﬁﬁ(x*)w
O(h?)

—o)2R2
u (2%) +ug (2*)(1 — a)h + “;x(x*)¥
C(z,a) + O(h®)

(@) + ug () ah + g @)%
Uy (2) (1 — a)h + g (x)o(1 — @) h?
“m(ﬂﬁ)m +C(x, @) + O(h%).

2

2

w(x+h) = u(x) + vz () h + U () % + C(x, ) + O(R?).

u(z —h) = u(x) — uz () h + Uy () i

2

=+ O(h?).



Then, we assume that 0 > o > —1. Therefore, x + h and = are on the
same side while z — h is on the other side. We use the Taylor
expansion twice for u(x — h) at *, then at x, as follows,

u(lx —h) =

+

(e — (1~ lal)h)

u™(a*) — uz ()1~ fa)
o) S o)
* (2*) — uf ()1~ )

u:w(x*)% +C(z,0) + O(h®)

w(z) — ug(z)|alh + tpe () ‘O‘E"Q

(g (7) — Uge(x)|a|)(1 — [a])h

(1 — |of)?n?
2

U (T) + C~’(x, a) + O(h%).

2

u(x — h) = u(z) — Uz () h + Uge (2) % + C(z,0) + O(h3).

w(z+h) = u(x) + uz () h + Uy () i

2

5 +O(h®).



In summary,

1
Ujy1

Uipr —Ui—1 [u] (U] (@i — 27)

2h 2h 2h
[uga](Tis1 — 2*)? 2
m + O(h*)
Uipo —u;  [u]  [ug](zi — ")
2h 2h 2h
(U] (75 — x*)Q 2
m + O(h?)
wi—1 = 2u; +uipr [u] [ug)(zipr — @)
h2 SRz R
[um](le — x*)z
o2 +O(h)
Up — 2y Fugpe [u] o Jug|(x; — )
2 Tt o
o ax)2
[Um](xz Y ) + O(h)

2h?



2D case— dimension by dimension

I':(X(s),Y(s)) s: parameter (arc length)
T = (X(s),Y(s)) n = (Y(s),~X(s))
[u] (5) = go(s) = [ua] X + [u,] Y = g
G =a) = ¥ -l —a
[us] = Xgo + Y1, [uy] = Yo — X1



Question: How to find [ug,], [tyy] ?
Differentiating the jump conditions w.r.t. s, we obtain

[tz ] (X)2 + [tay] XY + (1] X+ [ye] XY + [tyy] (Y)2 + [uy] Y = go
[toa] XY 4 [tay] (V)2 + [ua] V= [uga] (X)? = [uyy] XY — [uy] X = g2

[Usy] = [tyz]
[urx] = g2 + (Y) [f]? [uyy] = —92 + (X) [.ﬂv

where
g2 = 26XY go + ((X)? = (V)?)(go — k1) +2XY g

and kK = XY — XV is the curvature.



An IIM to incorporate the jumps in the normal

direction, Russel & Wang, 2003

Xij+1 "
ot x
Ki—1,j/XKij Kitl,j
Xl 0

Xi.i—1

[t

Figure: The five-point Laplacian at the irregular point x; ;.

Let X, and X« be the orthogonal projections of the grid points
X;—1,; and x; j4+1 on the interface, respectively.



Apu = Yzt = 2Wig F i1y Uigin = 2yt Ui
= h? 12
¥ = - + 7 _
Uim1y = 2yt Uiy n Ui jpr = 25+ U5y
h? h2
Uin,y — 2 Ui n Wi jn = 25 U
h? h2

+ — + _
Uim1y Moty Yiger T Yiga

* . h? B2

= (ugy)ij + (uyy)i; + O(h?) + ity Y
- xx)t] yy /] h2 h2

_ 1, .
= fi;t 2 (u§_yj +ul 1) + O(R?).



+ —
Uiq,5 — Uj—1,5

i—1,5
out d2 O?uf
_ < AZap +O(h3)>
Oou; d2 0?uy
< an 2 9n2 +O(h3)>

[ulx. +d [glﬂ + 5 [g:;L* +O(h®).

d: the signed distance between the grid point x;_; ; and the
projection X.. Notice that, d < 0 if the grid point x;_; ; is inside the
interface.



Question: How to find the second normal derivative at the interface

B
on X,

The Laplace operator on the interface

0%u ou 0%u
D (5 (0)) + 1K () 24X (5) + T2 (5) = F(K()

where the value k(X(s)) is the local curvature of the interface.

Tul e |2 - D
on? |y X "X | on x. 0s? Yx.
. ou 1, [0%u
Uiy = lulx, +d o N t347 |52 x

ou 1 ou o2

The correction term ug ;4 can be computed in a similar way.
;



An interpolation (grid to interface) formula for

non-smooth functions, Lai & Tseng 2008

Question: Given a non-smooth (with known jumps) function on the
grid, how to interpolate the value of u; at

X = (X1,Yr) = (z;; + ah,y; j + Bh) from surrounding values

Ui 5y Wit1,55 Ui, j+1 and ui+1,j+1?

Lt

Uit 1,541

Uit 1,5

Figure: An interpolation of the values from surrounding grid points to the
interface.



Let
u; = Bur+ (1 - B)up +C; + O(h?).
What is C[ 7
Bur+ (1= pB)up
= B ((1 - a)u;fjﬂ + OKU;H,J'H) +(1-0) ((1 —a)u; ; + au;+17j)
= B (A —a)u; g +augy )
+(1 - 5) ((1 —a) u;; + au;—l,j) +B(1-a) Uf,j+1
= u; +B(1—a)ui g

where the correction uf ; ., can be derived exactly same procedure
except neglecting the second-order term. That is,

c — ou
U1 = Ui — U = [ulx, +d {611] +0(h?),
X.

where X, is the orthogonal projection of the grid point x; ;11 on the
interface. Therefore, the correction term can be written as

Cr=-B(1-a) ([u]x* +d Bﬁ]&) .



Numerical results

We consider three different exact solutions for Poisson equation in
Q =[-1,1] x [-1,1] with jump discontinuities on an elliptical
interface I' = i—z + g—j =1} with a = 0.8, and b = 0.2. Interface
markers (X, Y;) = (0.8 cos 6, 0.2 siny), k=0,1,...,N — 1 with
0 = EAG, AO =27 /N

‘ Example 1 ‘ Example 2 Example 3
u_ |1 exp(z) cos(y) 22 —9?
uy | 1+1In(2y/22 +y?) | exp(z?) cos(y) 0
f~ 10 0 0
7 o (1+ 422) exp(a?) cos(y) | 0




N ||lu— te]lo ratio CPU time

Example 1 40 2.1577E-03 - 0.015
80 6.3698E-04  3.39 0.016

160 1.7153E-04 3.71 0.046

320 4.0663E-05  4.22 0.219

Example 2 40 1.1909E-03 3.71 0.015
80 3.0901E-04 3.85 0.016

160 7.8497E-05 3.94 0.078

320 1.9776E-05  3.97 0.235

Example 3 40 5.5511E-16 - 0.015
80 7.9797E-16 - 0.016

160 2.6749E-15 - 0.047

320 1.5377E-14 - 0.172

Table: The maximum errors for the examples of Poisson problem on the
N x N grid points.



N lu= —u; ||co,r ratio

40 1.6036E-03 -
80 4.7394E-04  3.38
160 1.2650E-04  3.75

320 4.0435E-05  3.13

Table: The interpolation errors for Example 2 of Poisson problem on the
interface markers (Xj,Y:) = (0.8 cos0x,0.2 sinfy), k=0,1,...,N —1 with
0r = kAG, AO =27 /N.



Stokes flow with singular forces, Lai & Tseng, 2008

The steady Stokes equations with singular forces along the interface I'
are of the form

—Vp+pAu+f+g = 0 in Q,
Vu = 0 in Q,
u = u on 02,

where

£(x) = /F F(s)3(x — X(s)) ds,
F=(F,F)=F-nn+(F-1)r=Fy,n+ F, T,

g: the external force



—-Vp+pAu+g = 0

V-u = 0
ou
[u] _07 M |:al'l:| - 7FTTa
dp oF,
R
u = W

Other works:
» LeVeque & Li 1997, Stokes flow with interface
» Cortez 2001, The regularized Stokeslets
» Beale & Strain 2008, Layton 2008

in €,
in Q,

onI’

onI’

on 092,



Solution procedure

Ap=V-g in Q,
op OF;
= Fn7 o | = . )
[p] [ 8n] o5, T leln onT
1 .
Au = ;(Vp—g), in Q,
ou 1
[u]_O, [811} __EFTTa onI'
u=u on 0f).
% OF;
[(‘3n = [pe] n1 + [py] n2 = P +[g] - n,
9 [p] OF,
ds = [ps] 1 + [py] Ty = — [pa] M2 + [py] ny = 55’

(Vo] = ([p2], [py])



Step 1: Solve the pressure Poisson equation

C

p

w2 inQ2

Ahp V- g+
with modified righthand side functions at those irregular points which
the modifications are based on the jump conditions of the pressure.
More precisely, the correction terms at those irregular points can be
computed as

e[ 1 (on-+[2)-52)
:Fn+d(a£T [g].n> +§d2 <[v.g]_m(8£7 +[g].n)_86252“).




Step 2: Solve the velocity equations

(&

u .
Apu = (Vip—g) + 5l inQ,

1
I
u = u on 0%,
where the corrections are made only at irregular points as
¢ ou 1, du 0? [u]
1 1
= <dFT7' t3 d? ([Vp] — [g] + IiFTT)) :

Note that, the above pressure gradient jump has been derived
previously.



A
A
\
A
4
\

Figure: A diagram of the interface cutting through a staggered grid with a
uniform mesh width h in €. The pressure is located at the center of the
cell, the velocity component u is at the left-right face, and v is at the

top-bottom face of a cell.



Modifications of computing p, and p, near the interface

1. Suppose the locations of p; ; and u; ; fall in the same side of the
interface while the location of p;1 1 ; falls in another side of the
interface, then we need to add a correction term pf., ; of piy1,;
so that the approximation of p, at u; ; grid can be computed by
((Piv1, + P51 ;) — pig)/h

2. If the locations of p;11,; and u; ; fall in the same side of the
interface while the location of p; ; falls in another side of the
interface, then the approximation of p, at u, ; grid can be
computed by (piy1,; — (pi,j + P ;))/h, where a correction term
p; ; of p; ; must be added.

3. py can be approximated similarly



Numerical results

> Q=1[-22 x[-2,2]
» T' = {X(0) = (cos(0),sin(h)),0 < § < 27}
> Staggered grid for fluid variables

» Examples were taken from the paper of Cortez in 2001.

Example 1: Normal forces on an interface Let

F(0) = 2 sin(36)X(0).
The exact solution is
—r3sin(30), r<1
r=3sin(30), r>1

)
u(r, 0) = gr sin(20) + 16r sin(46) — 17 sm(29) r<l
ir=2sin(20) — Sr~*sin(46) + 1r~2sin(40), r>1
2 cos(26) — ET 4 cos(46) — Lr* cos(20), r<l
r~2cos(20) + 74 cos(40) — fr2cos(46), r=>1.

1
’U(T, 0) = I

g"
3
8
8



Example 2: Tangential forces on an interface Let

F(0) = 2 sin(360)X’'(0).

The exact solution is

(r.0) —r3cos(30), r<1
r,0) =
P —r~3cos(36), r>1

(r.0) 1r% cos(20) + 15 cos(460) — 1r cos(26), r<l1
u(r, 8) =
—gr7%cos(20) + Sr~*cos(40) — 2 cos(46), r>1
1r2sin(20) + rtsin(40) + 3rtsin(20), r<1

0) =11
v(r,6) {§r2 sin(20) + Sr~4sin(40) — r~%sin(46), r > 1.



Example 3: Normal and tangential forces on an interface In this
example, we consider the boundary force that has both normal and
tangential components as

F(6) = 2 sin(30)X’(0) — cos®(0) X(0).

The velocity components v and v are chosen exactly the same as in
Example 2 while the pressure written in Cartesian coordinates
(x =rcosf,y =rsinb) is

(2,9) x3 4 cos(mx) cos(my) 1 <1

x =

PR cos(mx) cos(my) r>1.

The velocity and the pressure satisfy the Stokes equations with a
nonzero external force g # 0 which can be calculated analytically.
Here, we use the zero Neumann boundary condition (easily to be

checked) for the pressure and the Dirichlet boundary conditions for
the velocity.



N lu — telloo  ratio  |Jv —velloe ratio  ||p — pellow  ratio
Exl 32 2.9955E-03 - 9.5555E-03 - 1.4625E-02 -
64 7.4576E-04  4.02 2.1775E-03  4.39 3.2027E-03  4.57
128  2.1442E-04  3.48 5.4344E-04 4.01 8.2001E-04 3.91
256  4.8445E-05 4.43 1.3800E-04 3.94 1.9358E-04 4.24
Ex2 32 9.3164E-03 - 5.5489E-03 - 1.7579E-02 -
64 2.2334E-03  4.17 9.8214E-04 5.65 3.5421E-03 4.96
128  4.5329E-04 4.93 2.6948E-04 3.64 9.5814E-04 3.70
256 1.2100E-04 3.75 6.8943E-05 3.91 2.1994E-04 4.36
Ex3 32 9.9654E-03 - 9.3837E-03 - 2.5682E-02 -
64 2.7483E-03  3.63 1.8844E-03 4.98 T7.2394E-03  3.55
128  5.2897E-04 5.20 4.4803E-04 4.21 1.8827E-03 3.85
256 1.4410E-04 3.67 1.2263E-04 3.65 4.7359E-04 3.98

Table: The maximum errors for the examples of Stokes problem on N x N

grid points.



N [l — telloor ratio ||v — velloo,r ratio
32 1.0035E-02 - 1.0923E-02 -
64 2.3020E-03 4.36  2.9853E-03  3.66
128 4.5430E-04 5.07 6.8339E-04 4.33
256  1.2788E-04 3.55 1.8553E-04 3.71

Table: The interpolation errors for Example 3 of Stokes problem on the
interface markers (X, Yx) = (cosOk,sinéy), k=0,1,...,N — 1, 6, = kA9,
Al =27/N.



Poisson equation on an irregular domain

Consider the 2D Poisson equation on a domain 2 with irregular
boundary I'.

{Au:f x e

u=gqg zonT



Different embedding approaches

1. Capacitance matrix method, Widlund, Golub et. al. 1970s
2. Integral equation formulation and fast Poisson solver

» Double layer potential and jump conditions(depending on layer
density function), Mayo, 1984-1985

» Double layer potential with fast multipole accelerated integral
equation solver, McKenney, Greengard & Mayo, 1995

» Nearly singular integrals at irregular points, Beale & Lai 2001

3. Finite volume discretization with adaptive mesh refinement,

Johansen & Colella, 1998
4. Augmented IIM approach, Li 2006

5. Boundary extrapolation methods

» Second-order schemes, Gibou et. al. 2002, Macklin & Lowengrub
2005, Jomaa & Macaskill 2005

» Fourth-order scheme (5-point stencil), Gibou & Fedkiw 2005

» Compact high-order scheme



Integral equation formulation approach

Consider the 2D Laplace’s equation

Au=0 xe€Q
u=g zel

Then the solution can be written as a double layer potential

u(x) = % /F %ri)’x),u(s) ds, x €N,
where
r(z(s),x) = |2(s) — x|
)+ = [ S 5 ds = 2900

Outside 7, we define a harmonic function extension

u(x) ! /r Or(z(s).x) u(s)ds, xeQt.

T on ong

So, we have [u] = p(s) and [u,] = 0.



Au(x) =0, in Q uUQT,
[u] (5) = u(s), [un] =0 on T

Numerical procedures:
1. Solve an integral equation for the dipole strength u(s),
well-conditioned integral equation
2. Modify the discrete Laplacian at those irregular points

> by using the Taylor’s expansions and jump discontinuities, Mayo
1984
» by computing nearly singular integrals, Beale & Lai 2001

3. Apply the fast Poisson solver



N [|[u — uel|oo  ratio

32 8.84E-04 -
64 2.29E-04  3.86
128 5.89E-05  3.89
256 1.50E-05  3.93

Table: The errors for the Dirichlet problem.
I = {z?/cosh(1)? + y?/sinh(1)? = 1}.
The solution is ezp(z + v/3y)/2 cos((—v3z + y)/2).



Boundary extrapolation method—1D case

Consider the 1D Poisson equation
Upe = [, x €N =la,xy), Uy, = U

Embedding 2~ into a uniform domain on [a, b], and set « = 0 in
QF = [a,b\Q™, we have

Upe = [ T €Q™
UZD[:uI
u=0 x et



Fourth-order compact discretization

Compute the Poisson equation at the grid point, and write u; = u(x;).
Compact fourth-order discretization at regular point x;:
Uit+1 — 2’&1' + Uj—1 AZL’Q

. i = ) 4
Ax2 = (Uzz)z+ 12 (Umxxz)1+O(A$ )

Since Uyzrr = fzr and approximate it by second-order difference, we
have

Uip1 —2u; +ui—1_ fir1n £ 10fi + fioa
Ax? 12

At irregular point z;,

ugy = 2ui+uioy [+ 10fi+ fia

Ax? 12

Question: How to construct the ghost values to preserve the
compact structure?



Goal: to construct an interpolant @(x) of u(x) such that @(0) = u;,
(0Az) = uy and @(Az) = uf ;.



Different boundary value extrapolations

» Constant extrapolation: @(z) = uy
» Linear extrapolation: @(z) = cx + d with 4(0) = u;, @(0Azx) = uy
» Quadratic extrapolation: u(z) = bx? + cx + d with
U(—Azx) = u;—1, 4(0) = u;, w(0Az) = uy
» Cubic extrapolation: @(x) = az® + bx? + cx + d with
U(—Azx) = u;—1, 4(0) = u;, W(0AT) = us, uze(0Ax) = fr.

The extrapolation for f is similar except the cubic extrapolation

f(—QALL‘) = fi—2-



Degree of extrapolation Order of accuracy  Linear system

Constant First Symmetric
Linear Second Symmetric
Quadratic Third Non-symmetric
Cubic Fourth Non-symmetric
Linear extrapolation. u = sin(nz), z; = 2/3,Q2 = [0, 1]
N FD2 error ratio CP4 error ratio
16  3.9813E-03 3.5300E-03
32 9.7994E-04 2.02 9.0770E-04 1.96
64 2.4681E-04 1.99 2.2899E-04 1.99
128 6.1471E-05 2.01  5.7650E-05 1.99

256  1.5396E-05 2.00 1.4446E-05 2.00




Quadratic extrapolation. u = sin(wz),z; = 2/3,Q = [0, 1]

N CD2 error ratio CP4 error ratio
16 1.2973E-03 1.8028E-04

32 3.3837E-04 1.94 2.2010E-05 3.03
64 8.5905E-05 1.98 3.4392E-06 2.68
128 2.1751E-05 1.98 3.5976E-07 3.26
256  5.4567E-06 1.99 5.6212E-08 2.68

Cubic extrapolation. u = sin(wx),2; = 2/3,Q = [0, 1]

N CD2 error ratio CP4 error ratio
16 1.4134E-03 4.7210E-06

32 3.5114E-04 2.01 6.4784E-07 2.87
64 8.7817E-05 2.00 1.8597E-08 5.12
128 2.1950E-05 2.00 2.5700E-09 2.86
256  5.4876E-06 2.00 7.2334E-11 5.15










Compact scheme— 2D case

Standard compact 9-points stencil: h = Az = Ay

AQUiJ‘ = (4uz 1,5 + 4uz+1 J + 411,1] 1+ 4“1]-{-1

6h2
U151+ U141+ i1 -1 T U1 — 2004 5)

h2
= Au;; + ﬁ[(“mm)u + 2(Uaayy )iy + (Uyyyy i) + o(n*)

h2

= fij+ ﬁAfi,j +O(hY)
h2

= fij + EASfi,j +O(h")



Figure: A diagram of an irregular point Py

The discretization at the irregular point Py = (x;,y;) is

1
6?[4Uﬁ17j Fduig g+ du o+ Aul o

Fud gy Uisrj—1 + i1 o1 — 200 ]
FEA G+ Fivrg + G0+ fijer +8fi
12 '

Question: How to construct the ghost value ulG_ 1,410



L

i

Use the line segment, L to connect (x;—1,y;+1) and (z;,y;).
Locate the interface Ly, by solving a nonlinear equation.

L _ |Li—P]
Define 6~ = IZEaE

Construct the linear/quadratic extrapolation @ using the values
Us j, Ui+1,j—1, ur and their associated positions.

Extrapolate the ghost value ugl’j 11



mple 1

The exact solution v = cos(x + y) inside a unit circle. The domain is
embedded in a square. Outside the unit circle we set u = 0.



Linear Quadratic

N L error ratio L error ratio
16  1.5867E-03 3.2722E-04

32  3.3722E-04 2.23 2.9732E-05 3.46
64 9.2690E-05 1.81 4.2617E-06 2.80
128  2.2966E-05 2.07 4.8286E-07 3.14




Example 2

The exact solution u = cos(z + y) inside an elliptical domain

2
% + ¢4z = 1. The domain is embedded in a square. Outside the
ellipse, we set u = 0.



Linear Quadratic

N L*> error ratio L° error ratio
16  5.1891E-02 3.4991E-02

32 5.4063E-04 6.58 7.1812E-05 8.91
64 1.3898E-04 1.96 3.7956E-06 4.24
128 3.6658E-05 1.92 4.7220E-07 3.01
256 8.8252E-06 2.05 6.2963E-08 2.91




Example 3

The exact solution

u = sin(rx) + cos(nz) + sin(my) + cos(my) + 2% + b inside an
asteroid interface. The domain is embedded in a square. Outside the
asteroid, we set u = 0.



Linear Quadratic

N L*> error ratio L° error ratio
16  1.6856E-02 - 2.3293E-03 -

32  4.1630E-03 2.02 3.8621E-04 2.59
64 1.3166E-03 1.66 5.6038E-05 2.78
128 2.9076E-04 2.18 &.5473E-06 2.71
256 7.7409E-05 1.91 1.0385E-06 3.04
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Interfacial Problems with Fluid Flows

A fluid droplet (material) immersed in another fluid
(matrix) so there is an interface between those two phases

Droplet surface forces affect the fluid dynamics while the
fluid velocity changes the droplet geometry

» The droplet surface (or interface) will deform (geometry change)
due to the surrounding fluids

» How to represent the interface?
» How to track or capture the interface evolution?

» How to impose the stress force balance conditions at the
interface? Those stress forces might depend on the mean
curvature of the interface and its surface Laplacian

Two extra issues

» What if some surface material quantity (surfactant) exists along
the interface? Solving PDEs on an evolving surface

» What if there exists some extra constraints such as the
incompressibility (or inextensibility in 2D) on the interface?
Imposing PDE constraint on an evolving surface



PDEs on surfaces

Applications: Material science, biological modeling,
computer graphics, and image processing

vV v.v v v .Yy

Examine phase change of a material on a surface
Study wound healing on a skin

Place a texture (coating) on a surface

Segment out objects defined in surface textures
Restore a damaged pattern on a vase

Evolve surfactant (Surface activ agent) on interfaces to change
the surface tension, surface tension is no more a constant,
reduced capillary force and induced Marangoni force



3D surfactant transport equation on an interface

Consider a 2D interfacial element 3(¢) in a 3D domain, where

5(t) == A{X(a, 8,8)|(ev, B) € So} .

» Two independent parameters (a, 8) to label a fixed material
point of initial configuration (X(0) := {Xo(a, 8)|(e, B) € So}, So
is a fixed domain)

» Two tangential and normal vectors

X X X

T:% o 08 n:T1X72:WXW
' }@ ? }g} 71 % 72 }gxg'
da B Oa B

Assume no diffusion along the interface, then the surfactant mass

satisfies
d

— I(z,y,2,t)dS =0,

where dS is the surface area element.



Law of mass conservation

d

0=— I'(z,y,z,t) dS

at Js (z,y,2,t)

d 0X 0X
= ()( (o, B, 1), )‘ 95 dadf

0X 8X 0X 5X

- dadB + / r& ‘ dadB,
/z(o ‘ B y £(0) EEl a

:/ <6—F+U-V5F+F(Vs-u)> 8_X

:/ <£+U-V5F+F(Vs-u)> ds.

dadp,

B

Since the material element is arbitrary, we have

r
aa—t—i—u Vi I'+TVs-u=0.



If we add the diffusion, we have

or 1
— +u-V,I +T'Vs-u=

2
5 Pe. Vill, on X(t)

Computational issue: Given a velocity u and an initial surface X(0)
with initial surfactant distribution I'(0), how to compute the above

surfactant equation accurately and efficiently? Note that, % =u.

» Solve directly on the surface: surface FEM, FDM, FVM, surface
mesh, mesh stretching and distortion, mass conservation

» Extend the PDE to the Cartesian space: regular Cartesian
method can be applied, normal extension, concave surface, level
set, phase field method, no mass conservation

» A point cloud method: construct local mesh based on the data
points



A more challenging soluble surfactant problem: Coupled
surface-bulk PDEs on an evolving surface and an irregular
domain

Dr 1,
E—F(VS"U)F— Pe, VSF—FSaCS(l—F)—SdF on %
aC 1, .
E—kuVC—P—eVC 1an

1 oC oC
ﬁa_nh: - Sacs(l —F) - Sdr 8—7’1,1|891 - 0

> Vi=I—-n@n)V=V-— %n and V2 = V, - V, are the surface
gradient and surface Laplacian operators

» Peg and Pe are surface and bulk Peclet numbers, S, and S, are
the absorption and desorption Stanton number

» C, is the bulk concentration adjacent to the interface (Cs = C on
the interface)

» n is the unit normal vector to ¥ pointing into
» mq is the unit outward normal to the boundary 9Q; = 0.



Surface and volume charges in electrohydrodynamics

> g, = V- (¢E): volume-charge density in Q;
» ¢s = [¢E - n]: surface charge on %, [-] denotes the jump of the
quantity across the interface X

» E = —V¢ where ¢ is the electric potential
» Coupled volume and surface charge concentration equations

%—I—u-qu—i—V-(aE):O in Q
9gs
ot +us-Vsgs —gsn-(n-V)u+ [cE-n]+ (u-n)[g,] =0 on ¥

» The velocity u here is determined by Navier-Stokes flow. The
interface % moves along with the velocity u

Review: D. A. Saville (1997) Electrohydrodynamics: The
Taylor-Melcher leaky dielectric model



Computational challenges:

1.

t

How to solve the above coupled surface-bulk convection-diffusion
equation efficiently?

. Since ¥ (surface) is moving, we need to solve surface

concentration and €7 is an evolutional domain, we need to solve
convection-diffusion PDEs on a moving (time-dependent)
interface and an irregular domain, respectively.

Can we preserve the total surfactant mass (surface + bulk)?

. How to avoid the insolubility of surfactant on ¢, i.e. C' =0 in

Qo ?

. 2D insoluble surfactant (Lai, Tseng, & Huang, JCP 2008),

surfactant with moving contact line (Lai, Tseng, & Huang, CiCP
2010), 3D axisymmetric case ( Lai, Huang & Huang, IINAM
2011), phase-field model (Teng, Chern & Lai, DCDS-B, 2012),
level set with IIM (Xu, Huang, Lai & Li, CiCP 2014), soluble
surfactant (Chen & Lai, JCP 2014), droplet collision (Pan et. al.
& Lai, JFM 2016)

. Total surfactant mass conservation and Lagrangian markers

control with equi-arclength parametrization (Seol & Lai, 2016)



How to track the interface?

» Front-tracking method (Peskin 1972, Unverdi and Tryggvason
1992): Lagrangian method, follow the interface markers; easy to
implement, complex topological change, PDEs on surfaces can be
explicitly defined

> Level set method (Osher and Sethian 1988): Eulerian method,
zero level set function as the interface, geometrical quantities can
be easily found, can handle topological change, surface is
implicitly defined

» Phase field (diffuse interface) method (Anderson, McFadden and
Wheeler 1998): Eulerian method, phase field function, with
physical meaning, can handle topological change, surface is
implicitly defined

» Volume-of-fluid (VOF) method (Hirt and Nichols 1981): Eulerian
method, volume fraction of different fluids, hard to reconstruct
the interface



Droplets collision: Experiment and 1B 3D

axis-symmetric Computation (Pan et. al. & Lai, JFM
2016)




A



3D Interfacial flows with insoluble surfactant, Seol
& Lai 2016

ou _ 1 T f
E+(u-V)u——Vp+EV-(u(Vu—i—(Vu) ))+m in Q,
V:-u=0 in{,
f(x,t):/F(a,ﬁ,t)é(x—X(a,ﬁ,t))dA,

)
X

O (0,8,1) = U0, 5,1) = /Qu(x, 1) 8(x — X(o B, 1)) da,

F(o,B8,t) = Vso —20Hn, ola, B,t) =oo(1 —nl'(a, B,t)) on X,

Dr 1
s ” F =
+ (Vs O = -

D AT on X,

Re: Reynolds number, Ca: capillary number
o: surface tension, Peg: surface Peclet number

w: fluid viscosity, H: mean curvature

vV v v v

n: dimensionless elasticity number.



(Classical differential geometry
For the interface X(a, ), define the first fundamental form as

E=X, -X,, F=X,-Xg and G=Xz-Xg,

then
- S, By,
o I Bt
» For a surface vector field U® = PX,, + QXB,
Ve U = e [ (K < XlP)+ (%o x X51Q)|.

» The surface Laplacian (or Laplace-Beltrami operator) of I':

1 GI'y — FT ETs — FT,
|Xa X XB| « |Xa X XB| 8

1 Xa x Xg]




An equi-arclength parameterization

We modify the surface evolutional equation by adding two tangential
velocities as

X =U+Vit! + Vor?,
where 7! = X, /|X,| and 7% = X3/|X | are the unit tangent vectors.

Assume that the velocities U, Vi, V5 are all doubly 27-periodic. The
equi-arclength parametrization satisfies

0 0
8_a|Xa|_0 and %|XB|—O,

for all (o, 8) € [0,27] x [0, 27].



Thus, we have

1 2 1 2m
X, | = — X |da’ and |Xg| = — Xg|df. (1
Kol =g [ Kolda’ mnd %ol = o [ xplas )

Taking the time derivative in Eq. (1), it yields

1 o 1 2w
|X“|t:§/o |Xo]eda’  and |X,3|t:%/0 (Xpledf’,  (2)

where |X,|¢ can be expressed by

Xa'Xa
|on|t - 76( | = Xat . 7'1 = (Xt)oz . 7'1
_0U o Ve, , or?
= G Tt aa taa T T g T



Substituting the above equation into Eq. (2) and integrating with
respect to a, we obtain

27 @
Vst =5 [ Q' pda - [ Q50
271— 0 0
where
ou | 0V, oT? 1
Qaubt) =g T+ o (T )+ Vagg T
Similarly,
6 B
( 6 t) (Oé,ﬁ/,t)dﬁ/—/ R(Oé,ﬁ/,t)dﬁ/,
27T 0
where

R(aﬁi)z%—?-rﬂ%—?(#-#ﬂ% (%_Tﬁl.f?).

In the above derivations, we additionally impose the boundary
conditions for V; (0, 5,t) = Va(e,0,t) = 0.



Modified surfactant concentration equation

By taking the new surface parametrization

X =U+Vit! + Vor?,

the material derivative % now becomes
DI or
— = - (Wt 3. v,I.
Di at ( 17T + VéT ) V

So the modified surfactant equation becomes

or 1 9 1
E—(Vfl‘ +Vor?) -V, I'+ (V- U = Pe.

AT,
Multiplying the surface stretching factor | X, x Xg| on both sides of
the above equation and using the following identity,

8|Xa X X@|
ot

o0X
= Xa XWS'(E) — [Xo % Xl Vo (U + 7! + 1372,



we obtain
or 1 2
E|Xa XX6|_|Xa ><X6|(V1T + Vor )'VSF
I Xa x Xg] [Xa x Xg|
———7T = ———A,I.
+ ot Peg s
By applying the chain rule, one can simplify the above equation as

o (F‘Xa X Xﬁ|) Xa Xﬁ ‘Xa X Xﬁ‘
AR 2R 1K x XV - | V4 Vi p| = 2 22BN T
o Ko X% xal T 2|xg|) | = P las

—|Xa x Xg| [Vs - (1Tt + Vor?)] T

By directly substituting the formulas for the surface divergence and the surface
Laplacian, we have the modified surfactant concentration equation

|Xa x Xg|ViT |Xa x Xg|Val'
B + B8
\/E [e% \/a [3

1 (Gra—prﬁ) +(Erﬁ—Fra)
" Pes IXao xXg] /, Xa x Xg| /5]

0 (IXa x Xp])
ot




Grid layouts for Eulerian and Lagrangian variables
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Figure: Fluid variables on a staggered MAC grid in 3D (left). The
Lagrangian markers X and the surfactant concentration I' (right).

We use a Fourier representation to discretize the interface as
X(a, 8,1) = (o, 8,0)" + Y(a, B, 1), where

Ni1/2—1  Ny/2—1

Y, 8t)= > 3 (ki kyt)eiekitiha),

k1:—N1/2 k2:—N2/2



Numerical algorithm

A conservative scheme for the modified surfactant equation

1 g g+l _n R
m+%( aﬂ)l-}—%,m+% l+%,m+%( Q‘3)1+%,m+%

1+3,

At

Sap)” vt rn Sap)" vt e
L[ FaB)ig g 1)H»1,'m+% rrmtd Sas)in 1 1)l,m+% Lm+%

Ac E™ 1 E™ 1
l+1,m+§ l,m+§

ey
l+5,m l+5.m

n n+1 n n
1 [ Cet L et V2L e T L Ped)i g, (V)
=

N Gn B G
£ VoS mett 1+3,m

1 1 T R e IS rp -
= an 1 2’ T2 PAMARI S 50 | Elmdl Hlm
n +1 5 +1 5
PesAa (So‘ﬂ)l-%—l,m-l-% * ’m+2 Ao * ’m+2 af
rn -
1 1 1 1 n _rn
_ 1 0o Hymts  lmgmiby a 1 Mom41 ~ Tim
n l,m+% l,m+ %
(SaB)l,nH»% s 3 Aa , 3 AB
rn —rn
1 3 1 1 n — T
+ ! ! B 3mts H3mts  m L Tt me1r ~ Dlimta
™ 1+d.mt1 I+3,mt1
PesAB (S“B)l+%,m+1 3 AB 3 Aa
™ _rn
1 1 1 1 n _rn
_ 1 n Hgmty s mo3  n Piim = Uim
1+3,m AB I+%,m Aa ’



Sap = |Xa x Xg| = VEG — F?, is the local stretching factor on the
interface

Sa m + Sa ,m
(Sag)is g = Do2lim t ol

_ (Saﬁ)lm + (Sozﬁ)l—Q—Lm + (Saﬁ)l,m—i-l + (Sozﬁ)l+1,m+1

(SaB)iytmss = 1
Total surfactant mass conservation:

Ni—1Nzx—1

§ n+1 n+1

= Zo R
m

Ni—1N3—1

= Z Z Fl+2,m+ a,B)Zr%’er%AOéAB.

=0 m=0



Time-stepping scheme
1. Compute the tension by oy, = 09(1 — nI'}},) and then the
interfacial tension force by
F(X7,)dA(XE,) = (Vsoun — 200 Himtum) dA(X, ),
where dA(X]) is the surface area element computed by

2. Distribute the tension force acting on Lagrangian markers into
the Eulerian grid by using the smoothed Dirac delta function dj,

as Ni1—1No—1
' (x) = Y > F(XP,) on(x — Xf,) dAX,,),
=0 m=0
where x = (z,y, z) is the Eulerian grid point and

(%) ¢ (%) employing the 4-point supported



3. Find the indicator function I(x), where I(x) is set by 1 in the
lower fluid and 0 elsewhere, so the dimensionless viscosity can be
defined by =14 (A — 1)I(x). Then solve the fluid equation

3u* — 4u™ +u™"! . " . .
#JrQ(u -Vh)u 7(11 1»Vh)u !

=—Vpp" +i{)\Ahu —Apu” +Vy, - ( (V’Lun+(vhun)T))]+ -

ReCa’
3 op*
Ahp*zﬂvh-u*, BZ; =0on 9Qp, u* =u""! on op,
. 2At " n 2MAR
u"tt = ut — thp . Vap" Tl = Vapt + Vip™ - 3R Ah(vhp )

4. Update the new position

n n n n n n n
XP = X7+ At ((vl)mf1 (Tl)l T+ ()t ( 2)lm +Z 1 (x) 85 ( xfxlm)h3> .

5. After computing (Sa,g)?:ll 1 update the surfactant
2 2

concentration distribution I'"*! | and then apply the linear
I+5,m+3

. . . +1
interpolation to obtain '},



Numerical results

Numerical tests

>

>

>

Effect of Lagrangian mesh control

Convergence study for interfacial configuration, fluid velocity,
and surfactant concentration

Physical examples

» Self-healing dynamics (inward and outward spreading)
» Two-layer fluids in Couette flow

Numerical parameters
Unless otherwise stated, we use

| 4

| 4

>

Re=1,Ca=0.1, 09 =1, Pe;, =100, and n = 0.5

Fluid mesh size 1282 in [0, 27]?, and interfacial mesh size 2562
Fluid meshwidth h = 27/128 and interfacial meshwidth

Ao = AB =271/256

The time step size At = h/4 and the initial surfactant
concentration distribution I' = 0.5



Effect of mesh control
The initial s%rfa%ta%t <2:8n1centration distribution is
e, 8,0) = — tanh(20(1 — r))’ where r is the distance of

Lagrangian marker from the center of the given flat interface.

(a) t=0.46 (b) t=1.04
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Figure: The plots of arclength |Xq|Aa. The straight red line is the initial
uniform arclength.
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Figure: The underlying Lagrangian mesh and the corresponding surfactant
concentration at different times. Left panel (without mesh control); right
panel (with mesh control).
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Figure: At t = 1.04 with mesh control. (a) the velocity field on the plane

z = 7; (b) the velocity field on the plane y = .



Convergence study

vV v.v. v Yy

Set Re =1, Ca =0.01, Pe;, =1, and n =0.8
The grid size N = 32,64, 128,256

h =2r/N and At = h/256

Rate = log ([lun — uan|lec/[luen — uan|s)

When N = 32, we use (2N)? = 642 number of Lagrangian
markers.

The initial surfactant concentration distribution is

1 —tanh(20(2 — r))

F(a7570) = 9

The solutions are taken up to t = 2.4



N Jlun — uan oo Rate [on — van]loo Rate Jwn — wan]loo Rate
T=1.5
32 5.112E-02 - 5.734E-02 - 4.694E-02 -
64 2.463E-02 1.05 2.758E-02 1.06 1.933E-02 1.28
128 1.181E-02 1.06 1.287E-02 1.10 8.954E-03 1.11
T =24
32 3.302E-02 - 3.472E-02 - 2.109E-02 -
64 1.219E-02 1.44 1.300E-02 1.42 8.910E-03 1.24
128 5.792E-03 1.07 5.981E-03 1.12 4.433E-03 1.01
N HXN —)(QNHOQ Rate ”FN—FQNHOQ Rate
T=1
32 9.935E-02 - 1.601E-02 -
64 5.581E-02 0.83 5.973E-03 1.42
128 2.863E-02 0.96 2.635E-03 1.18
T =24
32 1.061E-01 - 1.028E-02 -
64 5.654E-02 0.91 3.674E-03 1.48
128 2.875E-02 0.98 1.559E-03 1.24

Table: Convergence rates of the fluid velocity u = (u, v, w), the Lagrangian

markers X, and the surfactant concentration I' at time 7' = 1.5 and 2.4.
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Figure: (a) the maximum amplitude of the deforming interface in the
z-direction; (b) the relative error of total surfactant mass.
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Self-healing dynamics: inward spreading of surfactant

» Set Re =107°, Ca = 0.1, Pe, = 1000, and = 0.5

» The dimensionless viscosity contrast A = 2 (more viscous lower
layer)

Grid size 128 x 128 x 64 in [0,27] x [0, 27| x [0, 7]

The initially flat interface is located at z = /10

v

v

The initial surfactant concentration distribution is

1 — tanh(20(1.8 — 1))
2

v

(e, 8,0) =




Figure: Interfacial deformations due to inward spreading of surfactant at
different times. The color represents the surfactant concentration I.
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Figure: Inward spreading of surfactant. (a) the sectional view of evolving
interface at y = 7; (b) the corresponding surfactant concentration I' on
those curves in (a); (c) the time evolutional plot of the maximum amplitude
of the deforming interface in the z-direction; (d) the relative error of total

surfactant mass.



Self-healing dynamics: outward spreading of surfactant
» The initially flat interface is located at z = 97 /10

» The initial surfactant concentration distribution is

I'(a, 3,0) = 1+ tanh(220(1.8 —7))
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Figure: Interfacial deformations due to outward spreading of surfactant at
different times. The color represents the surfactant concentration I'.
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Figure: Outward spreading of surfactant.
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(a) the sectional view of evolving
interface at y = m; (b) the corresponding surfactant concentration I' on
those curves in (a); (c) the time evolutional plot of the maximum amplitude
of the deforming interface in the z-direction; (d) the relative error of total



Two-layer fluids in Couette flow

vV v v v

Set Re =1, Pes = 1000, n = 0.5, and At = h/32
The viscosity contrast A = 4 (more viscous lower layer)
The initial surfactant concentration distribution is I' = 0.5

The initially perturbed interface is configured by

3
X = <a, B8,2m/10+ 0.1 _ (sinkasin kﬁ)) .
k=1
The boundary condition is u = (z,0,0) in [0, 27]?
We vary Ca from 0.2 to 0.6 to study how the different capillary
number affects the interfacial deformation.
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Figure: Two-layer fluids in Couette flow. The time evolutional plots of the
interface maximum amplitudes for different capillary numbers

Ca =0.2,0.4,0.6. The parameter 17 = 0 represents the case of without
surfactant while 7 = 0.5 represents the one with surfactant.
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Figure: In the presence of surfactant (n = 0.5, Ca = 0.6), the initially
perturbed interface under Couette flow tends to amplify and develops into a
wavy surface. The color represents the surfactant concentration I'.
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Figure: In the absence of surfactant (n = 0, Ca = 0.6), the initially

perturbed interface under Couette flow tends to damp out and becomes a

flat surface eventually.



Figure: The sectional views of interface with fixed y = /2 at different
times. (a) and (b) correspond to Figures 11 and 12, respectively.



Vesicle problem: Navier-Stokes + PDE constraint on the
evolving surface

» Vesicle can be visualized as a bubble of liquid within another
liquid with a closed lipid membrane suspended in aqueous
solution, size is about 10um

» Lipid membrane consists of tightly packed lipid molecules with
hydrophilic heads facing the exterior and interior fluids and
hydrophobic tails hiding in the middle, thickness is about 6nm so
we treat the membrane as a surface (3d) or a curve (2d)

» Lipid membrane (or vesicle boundary) can deform but resist area
dilation, that is surface incompressible



Questions: How the vesicle behaves in fluid flows?

» To mimic some mechanical behavior of red blood cells (RBC),
drug carrying capsules in capillary

» Amoeboid motion (active vesicle swimmer) in confined geometry,
Wu et. al. Lai & Misbah, PRE-Rapid 2015, Soft Matter 2016

» In shear flow: Tank-treading (T'T), Tumbling (TU), Trembling
(TR), depend on the viscosity contrast A\ = i/ pout; Keller &
Skalak JFM, 1982 (theory), Deschamps et. al. PNAS, 2009
(experiment)

Figure: Red blood cells: flexible biconcave disks



Mathematical formulation for vesicle problem

» Vesicle: A liquid drop within another liquid with a closed lipid
membrane

> Vesicle boundary ¥:: fluid membrane can deform, but resist area
dilation, i.e. ¥ is surface incompressible

» The fluid-structure interaction is formulated by the stress balance
condition on ¥




Immersed Boundary (IB) formulation: treat the
vesicle boundary as a force generator

(a—+u Vu) + Vp

5 wAu + f in Q
V-u = 0 in Q

Vs -U = on X
88—); = U= / (x,1)0(x — X)dx

where the immersed boundary force

f = / F(X)§(x—X)dX
b
F = F,+F, on ¥
F, = o(AH+2HH?-K))n

F, = Vso—-—2Hon



» H: mean curvature, K: Gaussian curvature,

VS:V—in, Ay =V, -V,
on

v

cp: bending rigidity

v

o: unknown elastic tension to be introduced to enforce V,-U =0

It can be shown that the tension doesn’t do extra work to the
fluid; ie. < S(o),u>q=—<0,Vs-U >p

» The pressure and elastic tension have the same roles as Lagrange
multipliers

v

Question: Where does the boundary force F' come from?

Answer: Variational derivative of Helfrich energy

E = @/HQdSJr/ads
22 >

0F
=F = —=F F,
X b+



Some differential geometry

Let the surface be denoted by

X(t) = {X(e, 8,8)|0 < e < 4,0 < 5 < €g}. Two linearly independent
tangent vectors on the surface are X, = %—Zf and Xg = %—)ﬁ(, and the
outward normal is n = (X, x Xg)/ |Xa x Xg|.

(X,@ X n)aa + (n X XQ)JB

Vso = X, % Xg| :
v 'U_(XBXII)-UO[—F(HXXO[)-UB
s o |Xa><X3| )
Lemma
(Z) _2Hn:XBXna+nBXXa

|Xa X X@| ’
(0(Xp xm)), +(o(n xX4))g
|Xa X XB| '

(i) Vso—20Hn =



Skew-adjoint operators, Lai & Seol, AML 2016

<qu:fQ X) ()dx
g)r = [p f( S)ds,

Define S(0) = [(Vso — 20Hn) X, x X3]d(x — X(a, 3,t)) dadf,

then

(S(0), u)o
Jo [Jp(Vso —20Hn) | X, x X3]6(x — X(a, 3,1)) dad 8] - u(x) dx
Jr(Vso —20Hn) - U(a, §,t) | Xo x Xp| dadf
Jroa(Xpg xn) - U+4op(nxX,) - U—-20Hn-U|X, x Xg| dadf
fF XBXII) U—l—(O'(nXXa))B-U
—[0(Xg xn)y +0(n xX,)g+20Hn|X, x Xg|] - Udadf
— Jpo(Xg xn)-U, +0(nxX,) Ugdadf
(since 0(Xg xn)y +0(n x X4)s +20Hn|X, x Xg| =0)
_fF V U |X XX5| dadf = — <O’,VS-U>F

Remark: Tension does not do extra work to the fluid. Similar to the
pressure in incompressible fluid!



Numerical issues:

1.

Coupled with fluid dynamics which vesicle boundary is moving
with fluid and whose shape is not known a priori

. Both the volume and the surface area of the vesicle are

conserved. How to maintain fluid and vesicle boundary
incompressible simultaneously?

Need to find H, A;H, n, K on a moving surface X

4. In additional to the fluid incompressibility, we need extra

ot

constraint (surface incompressibility) on the surface

. The role of pressure p on fluid equations is the same as the role of

tension o on V- U = 0. Both conditions are local!

How to solve the above governing equations efficiently?

. Boundary integral method, Immersed boundary (Front-tracking),

Level-set, or Phase field method?



IB and IIM simulations for vesicle problems

» Kim & Lai JCP 2010, 2D penalty IB method

» Li & Lai EAJAM 2011, IIM for 2D inextensible interface

» Kim & Lai PRE 2012, study the inertial effect on tumbling
inhibition

» Lai, Hu & Lin SISC 2012, a compound inextensible interface with
a solid particle, skew-adjoint operators

» Hu, Kim & Lai JCP 2014, 3D axis-symmetric case, nearly
incompressible approach

» Hsieh, Lai, Yang & You JSC 2015, an unconditionally energy
stable IB method for a compound inextensible interface with a
solid particle

» Wu, Fai, Atzberger & Peskin SISC 2015, SIBM for osmotic
swelling of vesicles

» Seol, Hu, Kim & Lai JCP 2016, 3D vesicle simulations under
shear flow



Nearly surface incompressibility approach

» V.U = 0 means that %|XT x Xs| =0

» To avoid solving the extra unknown tension o(r, s, t), we
alternatively use a spring-like elastic tension

o =00 (|X, x X, — X9 x X))

where ¢ > 1 and |X? x XY| is the initial surface dilating factor

» Similar idea has been used in level set framework by Maitre,
Misbah, Peyla & Raoult, Physica D 2012

» The modified elastic energy by

E,(X) = % // (1% x X| — X2 x X2|)2 drds



Derivation of modified elastic force by variational derivative

d
e —E, (X + EY)

Xr x X
//0'0 X, x Xs| — X2 x X9) |erxs| (Yr x Xs + X, x Y,) drds
T

://crn-(YTXXS—f—X,«XYS) drds (byn:%>

// o(Xs xn) Y, +onxX,) Ysdrds (by the scalar triple product formula)

— //(O'XS xn)r-Y 4 (on x X;)s - Y drds  (by integration by parts)
—//[UTXS xn+osn X X, 4+ 0(Xs X n)r +o(n x X;)s] - Y drds
—//.(UTX5 xn+osn XX, +0Xs Xn, +ons X X)) Y drds

- _/ (Vyo — 20Hn) - Y |X, x Xs| drds

—/F(Vsa —20Hn)-YdA (since dA = |X; x X;| drds)

= —/ F, -YdA F, are exactly identical !
r



Numerical algorithm

1. Compute the tension force F; associated with the spring-like tension
and the bending force Fy'

2. Distribute the interfacial force terms F; and F} from the Lagrangian
markers to the fluid grid points by using the discrete delta function as
in traditional IB method

3. Solve the Navier-Stokes equations by the pressure-increment
projection method to obtain new velocity field u™**

4. Interpolate the new velocity on the fluid grid point to the marker
points and then move the marker points to new positions X" 1



Axis-symmetric case, Hu, Kim & Lai, JCP 2014

CDC:D
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Figure: Freely suspended vesicles with different penalty number go. Blue
solid line: g9 = 2 X 1()3 green marker “x”: gp = 2 X 104; red marker “”:
a0 =2 x 10°.
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Figure: The corresponding evolution of total energy. Blue solid line:
o0 = 2 x 10%; green marker “x”: oo = 2 x 10%; red marker “”: oo = 2 x 10°



a0 IR Xl = RO 1X, [’ lloc [4n = Aol/A0 [V = VoI/Va

2 x 10? 2.988E-04 2.431E-03 9.391E-04
2 x 10* 6.551E-05 2.060E-04 2.865E-04
2 x 10° 2.903E-05 2.105E-05 2.657E-04

Table: The errors of the area dilating factor, the total surface area, and the
volume.



Full 3D case: Seol, Hu, Kim & Lai JCP 2016
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Figure: The comparison for three different stiffness parameters:

Go = 6 x 10*(A), 6 x 10°(0), and 6 x 105(Q). (a) the maximum relative
error of the local surface area; (b) the relative error of the global surface
area; (c) the relative error of the global volume; (d) the total energy.



Vesicle under shear flow
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Figure: The plot of the inclination angle (left) and the scaled mean angular
frequency (right) as functions of reduced volume v for different
dimensionless shear rate .

o _ 1 N, |rxv]|
» The frequency w can be computed using w = 7~ > GER

where r and v are the position and velocity of the vertices
projected on the xz-plane, respectively.
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