Index

Basics	page	Appendix	page
System Startup	2	Image export by FV31S-DT Viewer	13
Microscope control and Fluorescence filters	3	Combine Channels	14
My Functions	4	Fluorescence Filter Sets	15
Image Format: Color/Grayscale	5		
Acquiring Single Snapshot	6		
Acquiring Multi-Channel images	7		
Acquiring Multi-Position/MIA Images	8		
Acquiring Z-Stack Images	9		
Z-stack: EFI Processing	10		
How to clean the oil immersion objectives	11		:
System Shutdown	12		

Upright Microscope Olympus BX63

System Startup

- ① Computer
- 2 Monitor
- ③ Fluorescence light source
- 4 Supersonic Stage
- Do not push it! Use the XY control only!
- ⑤ CBH (Microscope control)
- © Touch Panel Control Press the switch in the back once, and wait until it shows [Start Operation].
- 🕏 Software: cellSens 🕵

- → The upper right of the window
- → YM2017/Reset Current Layout

Microscope control

> Objectives

Switch to 4x before shutting down 100x is an oil immersion objective!

Observation Methods

Method	LED	Mirror Unit	Excitation filter	Dichromatic Mirror	Emission filter	Applicable Fluorochrome
DAPI	385	89402 ET –Multi LED set	391/32	410-458	418-450	DAPI, Hoechst, etc.
GFP	475	This filter is	479/33	497-540	505-530	eGFP, Alexa488, FITC, etc.
TRITC	525	preferred for multi- channel	554/24	570-615	577-610	Alexa546/555/568, DsRed, Cy3, PI, etc.
CY5	630	images with faster acquisition.	638/31	655-730	663-725	Cy5, Alexa633, etc.
FITC- long	475	U-FBW	BP460-495	DM505	BA510IF	eGFP, eYFP, Alexa488, etc.
mCherry	575	U-FYW	BP545-585	DM595	BA600IF	Alexa594, DsRed, Texas Red, Cy3.5, etc.
РО			Transmitted light, Polarization microscopy		Picro Sirius red	
BF			Transmitted light, Bright Field image			
DIC			Transmitted light, Differentiated Interference Contrast image		Stage Escape Return	

My Functions

	Button	Details
1	White Balance	Set white balance for bright field image
2	Black Balance	(Optional, not necessary) Set black balance for fluorescent observation Please RESET it with right-click after use!
3	Multi Channel	
4	Channels	Separate a multi-channel image to 10-bit grayscale images
5	RGB Color	Convert a grayscale image to a 24-bit color image
6	Combine Channels	Combine channels to get an overlay 24-bit color image (details in appendix.)
7	Scale Bar	To show the scale bar
8	Burn In Info	To burn in the scale bar on the image. Once you burn in info on an image, you cannot change or remove it.
9	Z-Slices	Separate a z-stack image into different z-slices
10	EFI Processing	Extended Focal Image processing results in an image that is focused throughout all of its segments.
11	Save As…	Recommend format: *.tif or *.vsi

Image Format: Color Image and Grayscale Image

Grayscale Image (10-bit) Color Image (24-bit) RGB color image Fluorescence snapshot or →[Save As] .tif → [Save As] *.vsi Multi-Channel Images It's recommended to save test1110.tif Process_1143.vsi the raw data as *.vsi first. My Functions 1: YM My Functions 1: YM - 1 6 6 👥 YM - He e YM X Close All Undo X Close All Black Balance Black Balance Channels: Separate Channels Multichannel Multichannel → grayscale raw image Channels Combine Channel.. 🚰 Channels Combine Channel.. RGB color: Convert raw image to color images Scale Bar Scale Bar (24-bit) RGB Color RGB Color Burn In Info Burn In Info After saving the raw data (*.vsi) ✓ You can draw the scale bar and export it into Save As... Save As... *.tiff with [Viewer] software Otherwise, you can [separate channels] and convert to [RGB color images] to [save as] Macro Manager Macro Manager *.tif

Acquiring Single Images

- 1. Choose objective
- Choose the observation method
- 3. Find the required view from the eyepiece
- 4. Pull out the deflection slider
- 5. Click [Live] to adjust focus [Ctrl + H]: Switch to range indicator mode to help set exposure time
- 6. Set exposure time
 It suggests using the automatic exposure for bright field images and entering the exposure time manually for fluorescence images.
 Set white/black balance if necessary White balance is for bright field images; Black balance is for fluorescence image (MUST reset it before and after use!)
- 7. Set snapshot/process resolution
- 8. [Snapshot] to acquire the image
- 9. [Save As]

Manual Exposure

Automatic Exposure

SFL: Automatically enhance contrast of fluorescence image * Do not select it if you are acquiring images that require keeping the same imaging conditions

Acquiring Multi-Channel Images

After you find the field of interest and set the focus, ...

- 1. Go to the [Process Manager] tool window, located on the bottom right of the user interface
- 2. Select [Multi-Channel]
- Add Channel
- 4. Click [Live] to set exposure conditions for each of the channels added
 - → [Read Settings] of every channel respectively
 - ♦ Read the Z-offset of every channel if necessary
 - (1) MUST start with the first channel
 - (2) Click [Live] and adjust Z focus → Read Z-offset
 - (3) Adjust and read Z-offset for each of the channels
 - (4) Select **☑** Use Z-offset
- 5. Click [Start] to acquire multi-channel images
 - Can be combined with multi-position or Z-stack for multi-dimensional images

2.

Acquiring Multi-position Images

After choosing the objective, observation method, focusing, [Live] to set exposure time, …

- * Suggestion: you can use BF + automatic exposure.
- 1. To the [Process Manager] tool window, located on the bottom right of the user interface
- 2. Select [MIA] for Multi-position
- 3. To the [Stage Navigator] tool window
 - ① Load Overview Area
 - ② Acquire Overview
 - Automatically acquire an overview image with the lowest objective
 - 3 Add multi-position or define rectangle scan area to acquire
 - Define a rectangular area to acquire a stitched image
 - Add single positions
- 4. (Optional) Set up a focus map if necessary
- 5. Click [Start] to acquire multi-position images
 - Can be combined with multi-channel or Z-stack for multi-dimensional images

Process Manager

Acquiring **Z-stack** Images

5.

After choosing the objective and observation method, find a view of interest and set exposure time…

- To the [Process Manager] tool window, located on the bottom right of the user interface
- 2. Select [Z-stack]
- 3. Click [Live] and move focus upwards/downwards to set upper/lower focus positions, respectively
- 4. Apply the recommended step size or set the distance between two frames manually
 - Click [Go] to the top/bottom position to double-check
 - ♦ Suggestion: Do not select □ Extended Focal Imaging

The Z-stack image can be processed into EFI afterward if needed. However, if ☑ EFI is selected, it will result in only one image focused throughout its segments.

- 5. Click [Start] to acquire z-stack images
 - Can be combined with multi-channel or multi-position for multi-dimensional images

Proce...

Micro...

EFI Processing

(Extended focal image)

How to clean the Oil immersion objective

These are not Kimwipes!

100X

Olympus immersion oil

- (1) Wipe the excess immersion oil off with a clean lens cleaning paper
- (2) Take a new one and fold it up
- (3) Rinse the corner of folded lens cleaning paper with 95% Ethanol, then gently clean the objective with a spiral motion from the center to the rim
- (4) Check with another new lens cleaning paper

Don't add too much immersion oil on the sample, a small drop would be enough!

Upright Microscope Olympus BX63

System Shutdown

Make sure everything is turned off properly before you leave, and MUST write down the objectives used!

- Change back to 4X, move up to 0
- Push in the deflection slider
- 7 Exit cellSens

Before you exit the software

- → YM2017 Layout
- → Reset Current Layout
- **6** Touch Panel Control

Save Current Layout As.

Tap on [Off] to shut down the touch panel

Wait until it shows
[Olympus] on the
screen, then press the
switch in the back once

- ⑤ Turn off CBH control
- 4 Turn off the Supersonic Stage
- ③ Turn off the fluorescence light source
- ①② Turn off the computer

Image export by FV31S-DT viewer

➤ Open Multi-dimensional images (*.vsi or *.tif) → right click and choose Export

Combining multi-channel images

- Image > Combine Channels
- Select the desired images, add transmission image if available
- Correct for pixel shift if necessary

Convert to RGB color image if needed

Assign display color for each channel

Fluorescence Filter Set and light source

> 89402 ET -Multi LED set

89402m

X-Cite TURBO unit contains the following LED Wavelengths:

LED Position	LED Center Wavelength	Useable Wavelength Range
1	385nm	375nm-400nm
2	430nm	410nm-450nm
3	475nm	460nm-495nm
4	525nm	505nm-550nm
5	575nm	555nm-610nm
6	630nm	615nm-660nm

> FITC-long

> mCherry

