
# **TECAN Magellan** 2009 - 04 Clare Kuo ADVANCE BIOTECHNOLOGY

# TECAN 麥哲倫軟體 簡易操作步驟



# 一 前言

Magellan 麥哲倫軟體為一套可支援以下 TECAN 任一微孔盤分析儀之數據運算操作工具

| Instrument Types    | Measurement Mode                                                           |
|---------------------|----------------------------------------------------------------------------|
| DNA Expert          | Fluorescence / Absorbance / Luminescence                                   |
| GENios              | Fluorescence / Absorbance / Luminescence                                   |
| GENios FL           | Fluorescence                                                               |
| GENios Plus         | Fluorescence / Absorbance / Luminescence                                   |
| GENios Pro          | Fluorescence / Absorbance / Luminescence / Fluorescence Polarization       |
| SPECTRAFluor        | Fluorescence / Absorbance                                                  |
| SPECTRAFluor Plus   | Fluorescence / Absorbance / Luminescence                                   |
| SAFIRE              | Fluorescence / Absorbance                                                  |
| SAFIRE <sup>2</sup> | Fluorescence / Absorbance / Luminescence / Fluorescence Polarization       |
| SUNRISE             | Absorbance                                                                 |
| ULTRA Evolution     | Fluorescence / Absorbance / Luminescence / Fluorescence Polarization / FLT |
| ULTRA               | Fluorescence / Absorbance / Luminescence / Fluorescence Polarization       |
| ULTRA 384           | Fluorescence / Absorbance / Luminescence / Fluorescence Polarization       |
| Infinite M200       | Fluorescence / Absorbance / Luminescence                                   |
| Infinite F200       | Fluorescence / Absorbance / Luminescence / Fluorescence Polarization       |
| Infinite F500       | Fluorescence / Absorbance / Luminescence / Fluorescence Polarization       |

# 軟體安裝支電腦硬體規格如下:



| Operating system  |                             |
|-------------------|-----------------------------|
| Microsoft Windows | Windows XP Professional/SP2 |

Additionally supported software: Microsoft Excel 2000

Microsoft Excel XP Microsoft Excel 2003

# 二 軟體編輯操作

TECAN Magellan 麥哲倫軟體設計概念,為一套以工作流程為導向之精靈介面軟體。

軟體可允許自行新增檔案放置位置 (例如:程式執行檔 mth, 結果數據檔 wsp, 標準曲線 std,

樣品管理清單 smp...等,可方便不同使用者自行存放各自的檔案位置)



麥哲倫軟體主要檔案型式標誌及縮寫如下:

- Method 程式執行檔 mth
- Morkspace 結果數據檔 wsp
- Manual Standard curve 標準曲線 std
- Sample ID list 樣品管理清單 smp

檔案型式說明如下:

# Method 程式執行檔 mth

Method 用來定義所有參數來計算結果·從軟體介面選擇 Create/Edit 選項來新增或修改實

驗所需之測量參數(濾鏡波長、震盪時間及測量次數等)、樣品擺放位置、數量和形式,細項

設定、數據管理或報告輸出格式....等。其中細項設定也包含數據讀值運算等。

# Workspace 結果數據檔 wsp

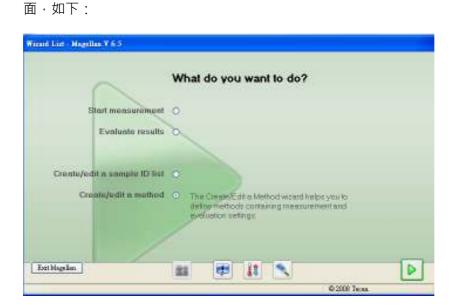
Workspace 用來開始測量·觀看和儲存結果·為每次偵測判讀後得到的結果數據檔·裡面

除了有基本的結果數據亦包含實驗的測量參數;得到的wsp可再進一步做數字或圖表設定。

# Standard curve 標準曲線 std

可預先將做好之標準曲線儲存以方便後續濃度計算使用。

# Sample ID list 樣品管理清單 smp


可從軟體介面選擇 Sample ID list 選項來管理樣品名稱清單·可讓使用者以字母與數字符號等字串自行定義。

歸納整理在 TECAN Magellan 麥哲倫軟體常出現的副檔名如下表:

| Type of File     | File Extension | Directory magellan     |
|------------------|----------------|------------------------|
| Workspace        | .wsp           | \magellan\wsp          |
| Method           | .mth           | \ <b>magellan</b> \mth |
| Sample ID List   | .smp           | \ <b>magellan</b> \smp |
| Export Files     | .asc           | \magellan\asc          |
| Standard Curve   | .std           | \magellan\wsp          |
| Plate Definition | .pdf / pdfx    | \Reader\pdf            |
|                  |                | \Reader\pdfx           |

# 三 使用者操作介面

TECAN Magellan 麥哲倫軟體設計概念,為一套以工作流程為導向之精靈介面軟體,依據實驗設計執行為設定方向,類似 Windows 系統的編輯概念。軟體開啟後即進入精靈歡迎介



主畫面由以下操作清單所組成,可依據使用者想要執行的程式項目個別做選擇:

1. Start Measurement Wizard 開始測量模式

可讓使用者簡單快速的執行測量參數·開始進行測量 Raw data 原始數據的判讀·或者 是透過以編輯好的程式執行檔來做判讀。

2. Evaluate Result Wizard 評估結果數據

可讓使用者針對數據做評估或修改,觀看所有原始資料或結果。

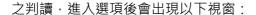
- 3. Attach Signature Wizard 附加簽名檔 (此功能只提供臨床單位使用)
- 4. Create/Edit a Sample ID List Wizard 新增或編輯樣品清單

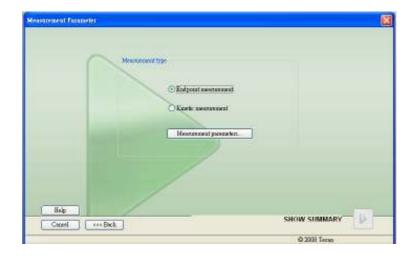
可讓使用者針對樣品做清單管理,適合臨床單位有大量檢體來源的清單管理。


# 5. Create/Edit a Method Wizard 新增或編輯程式執行檔

可讓使用者選擇此功能,來設定或編輯包含測量參數等程式執行檔

細項說明如下:

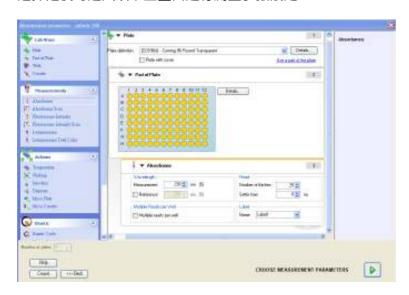

# 1. Start Measurement Wizard 開始測量模式


在主畫面點取 Start Measurement 即可進入開始測量模式之畫面如下



其中可出現以下之主要選項:

1.1 Obtain Raw Data 開始判讀·在此撰項只須設定測量參數即可簡單快速執行原始數據






此畫面可先依據測量模式選擇主要之測量模式:

- O Endpoint 單點測量模式,例如一般的酵素免疫分析實驗。
- O Kinetic 酵素動力模式,可輸入測量次數及測量間的時間差。

選擇之後可進入以下主畫面進行測量參數設定



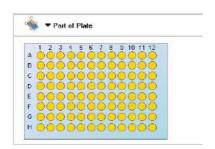
左手邊主要為軟體的**控制列**·分成 5 個部分·每個部分都由各自的要素及獨立的工作 流程表·並非所有選項都可以選擇·必須藉由儀器的模組規格而定。可利用按鍵移動下 拉式控制工作流程表。

- O Lab Ware 實驗物件:依據實驗微孔盤格式做選擇
- O Measurements 測量模式:選擇實驗所需的偵測模式。吸光、螢光或冷光等
- O Actions 選項:可選擇有無溫控、震盪、分注器之使用
- O Kinetics 酵素動力學:設定酵素動力學之循環次數及條件
- O Miscellaneous 其他設定:可依據需求加入註解,使用者需求,等待時間等細項 設定。

詳細說明如下:

#### Plate 微盤

可利用下拉式選項選擇微盤格式,按下 detail 鍵可看更多詳細資料。


如果微盤有利用蓋子覆蓋,可以選擇 Plate with cover 選項來調整 Z-position

位置,確保微盤移動時不會太靠近儀器的光學系統。開始針對選擇的位置進行判讀,



#### Part of Plate 微盤位置

可在單一位置或滑鼠左鍵下拉圈選想要判讀的區域·即可依據微盤排列設定要判的 特定位置。



### Well 模式

Well 模式可應用在微盤位置之後,須搭配芬注器模式使用



### Absorbance 吸光



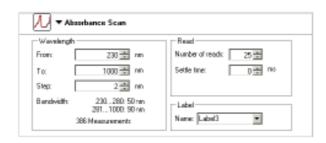
可藉由定義測量波長來進行吸光模式,也可選擇參考值波長扣除背景值進行雙波長測

量模式。在濾鏡模組的儀器,有兩個下拉式選項作為測量波長和參考值波長選擇,如

果沒有任何選項可供選擇,表示裡面沒有濾鏡或還沒被定義。

#### 測量參數如下:

Wavelength 鍵入測量所需波長,可依據實驗需求輸入參考值波長


Read Number of Read: 儀器氙氣燈泡閃爍次數 (1~100)

Settle time:從微盤移動到開始測量的時間,可從 0~1000ms 設

定,建議在96微盤進行吸光實驗時使用。

Label Name:實驗的標定名稱

#### Absorbance Scan 吸光光譜掃描



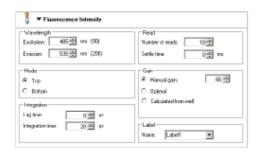
吸光光譜掃描只適用於全波長模組。

#### 測量參數如下:

Wavelength From:開始測量的波長範圍

To: 終止測量的波長範圍

Step:輸入波長間隔


Read Number of Read: 儀器氙氣燈泡閃爍次數 (1~100)

Settle time:從微盤移動到開始測量的時間,可從 0~1000ms 設

定,建議在96微盤進行吸光實驗時使用。

Label Name:實驗的標定名稱

#### Fluorescence Intensity 螢光



螢光測量可用來測量大量螢光物標定強度。

#### 螢光測量參數如下:

Wavelength 濾鏡模組,可利用下拉式選項可設定特定的激發光和散射光波

長,如果沒有任何選項可供選擇,表示裡面沒有濾鏡或還沒被定

義。

全波長模組可在一定範圍選擇所需波長。

Read 可設定特定的 Number of Read 和 Settle time

Mode 選擇上方或下方判讀

Gain PMT 放大倍數,可選擇 3 種模式:

Manual Gain:可在 1~255 數值間設定

Optimal:可由軟體自行定義 Gain 值,避免數據過高,如果是未知

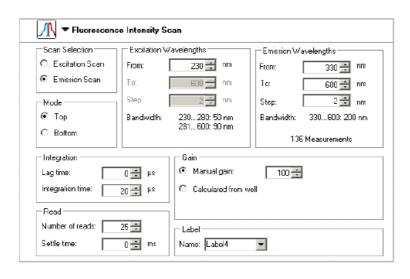
的螢光素,建議利用這項功能

Calculated from well:可從特定 well 計算出最適合的 Gain 值。

Integration 可設定 Lag time 和 Integration time, 一般螢光設定值為 O(Lag

time time) · 40(Integration time) · 如果是 TRF 實驗 · 時間則可依據

kit 推薦再進一步設定。


Lag time:在 flash 和 Integration 間的時間(通常微 0~2000 us).

TRF 實驗通常≥40us

Integration time:開始接收訊息的時間(通常微 20~2000 us)

Label Name:實驗的標定名稱

### Fluorescence Intensity Scan 螢光光譜掃描



螢光譜掃描只適用於全波長模組。

螢光譜掃描參數如下:

### **TECAN MAGELLAN**

Scan Selection 可選擇掃描激發光或掃描散射光兩種形式

Excitation 只能輸入激發光波長

Wavelength

Emission 只能輸入散射光波長

Wavelength

Mode 選擇上方或下方判讀

Integration time 可設定 Lag time 和 Integration time · 一般螢光設定值為

0(Lag time) · 40(Integration time) · 如果是 TRF 實驗 · 時間

則可依據 kit 推薦再進一步設定。

Lag time: 可設定要接收多少時間的光 (通常為

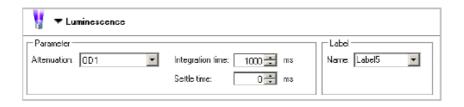
0~2000*u*s),TRF 實驗通常≧40*u*s

Integration time: 要接收多少時間的訊號 (通常為

20~2000*u*s)

Gain PMT 放大倍數

Manual Gain:可在 1~255 數值間設定


Calculated from well:可從特定 well 計算出最適合的 Gain

值,。

Read 可設定特定的 Number of Read 和 Settle time

Label Name:實驗的標定名稱

#### Luminescence 冷光



冷光模式可用來測量酵素標定物的活性,不需額外螢光 filter

#### 冷光測量參數如下:

Attenuation 冷光強度太強可藉由低密度 filter 降低濃度,可由 OD1(可藉

由 1 decade 的 dynamic range)或 None 選項來調整

Integration time 可設定訊號接收時間

Settle time 可輸入下次要開始測量的時間

#### Luminescence Dual Color 雙色冷光



雙色冷光可用來測量在同一時間內,光束有2個不同的波長,可利用下拉式選項選

擇波長(Green or Magenta)

## 雙色冷光測量參數如下:

Parameter 選擇 Green 或 Magenta filter 並設定 Integration time,也可在

測量前輸入 Settle time

Label 輸入實驗的標定名稱

## Temperature 溫控

溫控設定可以依據實驗需求調整溫度參數,並且可以隨時顯示儀器的溫度變化。



#### 温控設定參數如下:

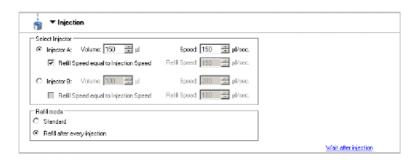
On/ Off 選擇 on 開始升溫至所要的溫度範圍

Temperature 可 key in 所需之溫度或利用下拉式選擇

## Shaking 震盪功能

震動設定可以依據實驗需求調整震盪時間,可在測量前或酵素動力不同次數間。




#### 震動設定參數如下:

Duration 可從 1~600 秒間選擇所需之震盪時間

Mode 利用下拉式選擇 Linear or Orbital

Amplitude 可選擇所需之振幅

#### Injection 注射器



可利用注射器功能將液體注射至單一個微孔內,只能使用於 well 模式下。

#### 注射器設定參數如下:

Select Injector 可選擇A或B

Volume:選擇要注射至單一個微孔內之體積

Speed:選擇液體注射之速度

Refill speed equal to injector speed:如果注射速度很慢,可利用

此選項讓注射器補充速度變快。

Refill mode 每次分注後可利用標準或再填滿裝置。

Standard:依據注射器體積進行注射,等到注射器空了,才補充一

次

Refill:每次注射後都要將注射器填滿。

### Dispense 分注器

可利用分注器功能將液體分注至整個微孔盤部分位置,不適用於單一 well 模式。

#### 注射器設定參數如下:



Select Injector 可選擇A或B

Volume:選擇要注射至單一個微孔內之體積

Speed:選擇液體注射之速度

Refill speed equal to injector speed:如果注射速度很慢,可利用

此選項讓注射器補充速度變快。

Refill mode 每次分注後可利用標準或再填滿裝置。

Standard:依據注射器體積進行注射,等到注射器空了,才再補充

一次

Refill:每次注射後都要將注射器填滿。

#### Move Plate 移動微盤

可利用微盤移動控制微盤進出儀器,如果是在工作流程中需要移動微盤(例如:分注試

劑至部分微盤),所有流程必須要依序排好。



# Kinetic Cycle 酵素動力循環

可在特定時間差做單次測量。



#### 酵素動力循環設定參數如下:

Cycles Number of cycles:可 key in 或下拉式選擇所需之次數

Kinetic Interval Use of kinetic interval:輸入每次測量的時間差

#### Kinetic Condition 酵素動力條件

可決定在哪一個循環中要進行特定之設定,



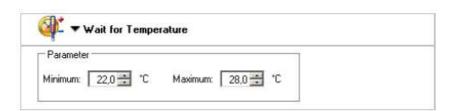
#### Comment 註解


可針對實驗測量寫一些文字註解。



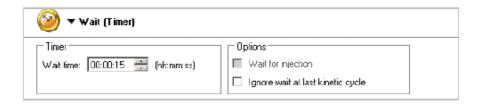
# User Request 使用者需求設定

可讓使用者在實驗進行過程中的特定時間出現一些使用者需求設定,可當作一種提


示訊號。例如:在一個實驗流程中,若有需要分注試劑,可提醒顯示需要讓微盤移



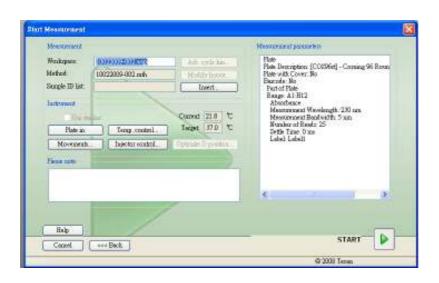
動,可一步驟一步驟完成實驗流程。


# Wait for Temperature 等待溫度

可在特殊到達特定溫度範圍時,提醒顯示

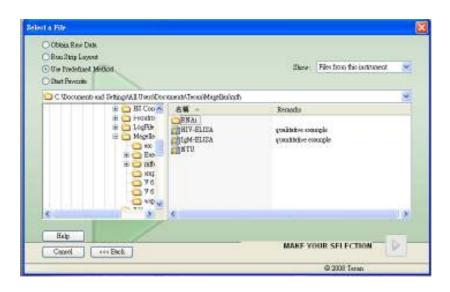


#### Wait for Timer 等待時間


可在進行下一步驟前,提醒顯示特殊時間點到達,可輸入所需之時間



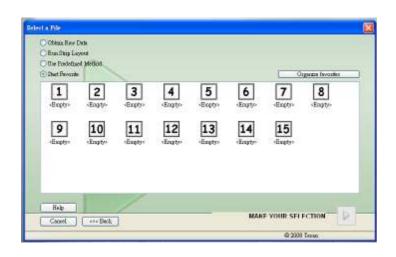
畫面中間位置為工作流程·可從左手邊的控制列拉取所需要的測量參數·在要移動的選項連續按兩下按鍵即可自動放到工作流程的的最底部;如果利用下拉式選項·即可移動至要放置的位置。所有的工作流程都是有次序的依序工作流程排列。


如果工作流程有發生錯誤或設定錯誤,就會出現錯誤訊息,也會出現在畫面右手邊的 Info pane,顯示錯誤訊息,可以按下以得知詳細的錯誤訊息。如果程式設定在定義上 有錯誤,也會出現警告標誌及 Info pane 顯示錯誤訊息,即無法進行測量。

完成後,按下 NEXT 鍵即可進入以下畫面開始執行原始數據之判讀。



1.2 Use Predefined Method 可讓操作者從已編輯好之程式執行檔選擇所需檔案名稱執


行測量判讀,進入選項後會出現以下視窗:

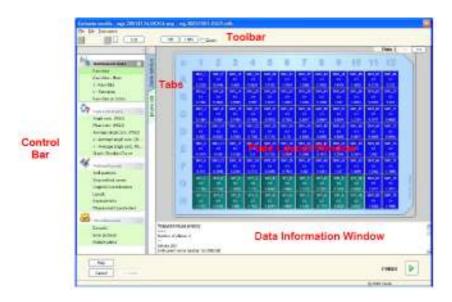


可自行點選所需執行檔名稱,開始進行判讀。

1.3 Start Favorite 可讓操作者從已編輯好之程式執行檔建入 15 個常用的程式將之設定為

我的最愛來開啟,進入選項後會出現以下視窗:




可自行點選所需執行檔名稱,開始進行判讀。

# 2. Evaluate Result Wizard 評估結果數據

若想要讀取已判讀過的數據結果,可在主畫面點取 Evaluate Result Wizard 開始針對結

果數據做評估。選擇檔案後(副檔名為 wsp)即可針對數據進行評估或修改。

# Wsp Workspace 畫面瀏覽如下:



#### 可先針對以下幾點做修改:

- 2.1 Plate layout 樣品擺放位置、數量和形式。
- 2.2 Toolbar 可用來編輯·放大或縮小·切換不同動力學次數間的數據。
- 2.3 Data information 視窗顯示測量參數,統計分析等訊息。
- 2.4 Control Bar of Evaluate Results 顯示所有可供參考的數據資料,其中包含以下資訊:

# 2.4.1 Instrument data 原始數據

吸光值,螢光值,冷光讀值。

### 雙波長測量

統計數據 (平均值,標準偏差,誤差值...等)

以顏色深淺表式濃度

酵素動力曲線圖

掃描結果的波峰圖

# 2.4.2 Reduced data 運算後之數據

雙波長測量結果相減

螢光偏極光實驗運算

# 2.4.3 Transformed data 數據運算

可用來進行數據結果加減乘除之運算

可提供運算結果

運算統計

以顏色顯示

顯示酵素動力學圖示

# 2.4.4 Kinetic parameter 酵素動力學設定參數

平均斜率

適合度檢測

相關係數

最大斜率

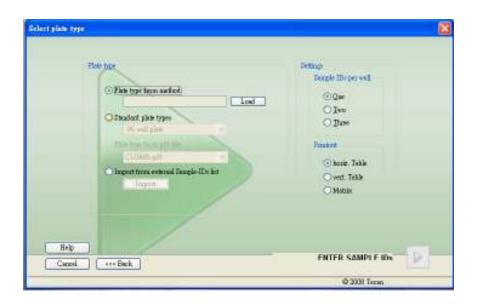
時間最大斜率

Onset OD

最小及最大時間斜率

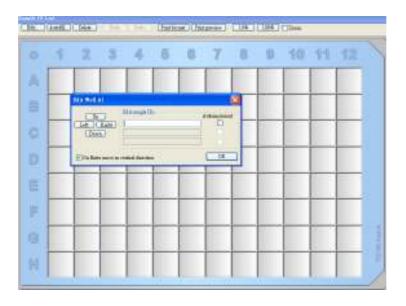
曲線下面積

2.5 Control Bar of Edit Method 可在重新設定或顯示載入之測量參數。

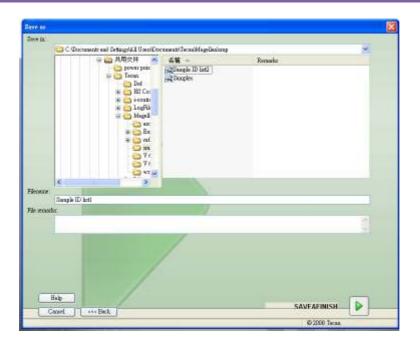

所有修改過的數據,按下 NEXT 鍵,即可線上即時修改數據結果。

3 Attach Signature Wizard 附加簽名檔 (此功能只提供臨床單位使用)

# 4 Create/Edit a Sample ID List Wizard 新增或編輯樣品清單


可利用此功能來針對各種樣品做清單管理·可建立一個新的樣品清單管理或是用已編輯 過的進行修改。

4.1 Create New Sample ID List 可先從以下的頁面選擇帶測微孔盤格式進入開始建立新的 樣品清單。

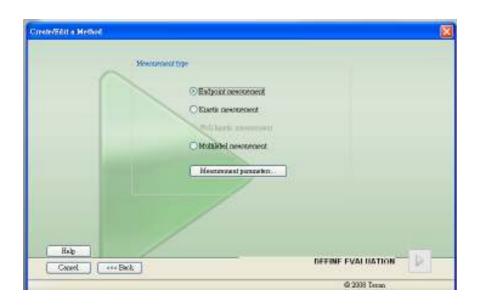



4.2 Edit a Sample ID List 編輯樣品清單管理·一個樣品做多可給予至 3 種分類編碼;其中

可利用 Autofill 自動填滿選項,樣品清單會依序流水號以垂直或平行方向自動填滿。



- 4.3 Import a Sample ID List 軟體可允許從以下已建立好之檔案格式鍵入樣品清單管理。
  - 4.3.1 Easy-Files.esy
  - 4.3.2 Tecan-files.tpl
  - 4.3.3 DD1-Files.dd1
  - 4.3.4 Hamilton-Files.pro
  - 4.3.5 APL-Files.apl
  - 4.3.6 Gemini-Files.apl
  - 4.3.7 Custom Format Files.txt
- 4.4 Saving the Sample ID List 編輯好的樣品清單可儲存於適當的檔案夾·方便後續使用。




# 5 Create/Edit a Method Wizard 新增或編輯程式執行檔

可利用此功能選擇設定或編輯已存在之程式執行檔。主要的工作清單包含以下流程:

- 點選建立新程式,並將新程式名稱輸入
- 設定測量參數及
- 定義樣品擺放位置、數量和形式
- 選擇報告列印格式
- 設定自動資料處理,選擇每次測量完後資料會自動列印、儲存或輸出格式。
- I. Define the Measurement Parameters 定義測量參數

測量參數主要包含待測的微孔盤格式、濾鏡波長、螢光細項設定值。進入以下畫面選擇測量種類:



#### 主要有3種類型:

- O Endpoint 單點測量模式,例如一般的酵素免疫分析實驗 (細項設定詳見第8頁)。
- O Kinetic 酵素動力模式,可輸入測量次數及測量間的時間差。
- O Multilabel 多點測量判讀·輸入 1 種以上之測量參數已針對微孔盤進行多點判讀。

# II. Define Evaluation 定義計算結果所需參數

進入以下畫面即可針對需要計算公式之設定



# 主要設定流程包含以下流程及概念:

設立樣品擺放位置、數量和形式



定義濃度值或稀釋倍數



數據之加減乘除運算



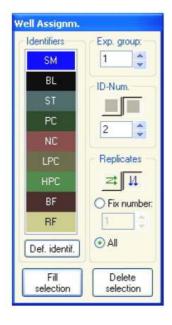
標準曲線



定義臨界值



確認實驗標準




數據管理

# **Define a Plate Layout**

要進行計算結果設定之前,首先須先透過 Plate Layout 選項裡輸入樣品擺放位置、數

量和形式。介面視窗會出現以下 Well Assignment 圖示:



| SM  | Sample 樣品                     |
|-----|-------------------------------|
| BL  | Blank 空白對照組                   |
| ST  | Standard 標準品對照組               |
| PC  | Positive Control 陽性對照組        |
| NC  | Negative Control 陰性對照組        |
| LPC | Low Positive Control 低陽性對照組   |
| HPC | High Positive Control 高陽性對照組  |
| BF  | Polarization Reference Buffer |
| RF  | Polarization Reference        |

Identifiers 位置名稱定義: 給每一個樣品位置定義名稱及辨識符號。

Experimental Group 實驗群組:如果實驗樣品有超過1種類別就可使用此功能來區

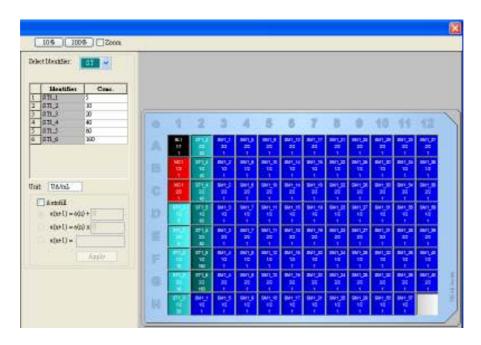
分不同的實驗(需要相同的測量波長,震盪時間等測量參數)。

ID Number 識別號碼:用來辨認當樣品有二重複以上之群組。

Replicates 重複方式:設定重複之依序為水平或垂直的排列組合方式。

Fix Number 重複數量:設定重複數量。

設定之範例如下:在辨識符號選擇所需符號,之後在重複選項中點選數量及排列順序,


利用滑鼠在視窗上選擇所要設定範圍或直接點選單獨位置,選取好之後,按下 Fill

Selection 按鍵及完成設定。

### Define Conc., Dil. and Ref Values

確認樣品格式後,若實驗中有放置 ST 標準品對照組,則可進入此功能定義配置之已知

濃度的標準品對照組。或是亦可用來定義樣品稀釋倍數值。



Identifiers 辨識符號:選擇所要設定之濃度之辨識符號。

Conc 濃度值: 鍵入已知濃度

Unit 單位:鍵入濃度單位

Autofill 自動填入:可選擇等級差數或等比級數方式自動增加數值。選取好之後,按下

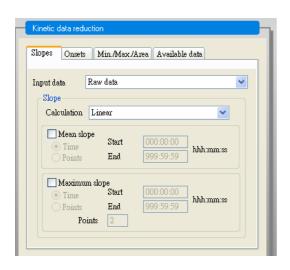
Apply 按鍵及完成設定。

### **Transformation Data**

可透過此功能進行樣品加減乘數等計算參數·若實驗中有放置 BL 空白對照組·則可進

入此功能會自動顯示 Do You Want To Definite a Blank Reduction 選項·進行空白對

照組之扣除。




Input Data 資料來源:透過下拉式功能選擇計算公式所需之資料種類

Fx 計算公式欄:類似 excel 編輯概念,包含公式所需之計算符號,函數及變數名稱。 設定之範例如下:按下 Transformation data 選項,在選擇 Input Data 選擇 Raw data,在公式欄中輸入計算公式。例如 x-BL1 (x 代表所有選取的位置,BL1 代表空白對照組第 1 支,表示所選取的位置減去空白對照組的讀值),利用滑鼠在視窗上選擇所要設定範圍或直接點選單獨位置,選取好之後即完成設定。

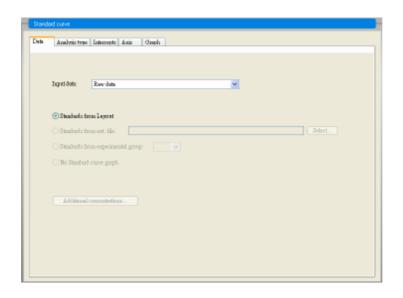
# Transformation Data – Kinetic Data Reduction

可透過此功能進行酵素動力學相關參數設定,按下選項後出現以下視窗:



Slopes 斜率:提供兩種斜率計算公式(Linear/Quadratic)·依據在開始及結束時間內所設定之點數數量所畫出來的斜線。

Onset OD: 設定計算 OD 值開始增加或減少的時間,並得知要達到某個 OD 值需時間。


Min/Max 最小及最大表:依據所設定之點數數量得知最小及最大 OD 值。

Area Under Curve 曲線下面積:可計算曲線下面積。

Available Data 可提供輸出資料:提供之前設定後可輸出之資料。

### **Standard Curve**

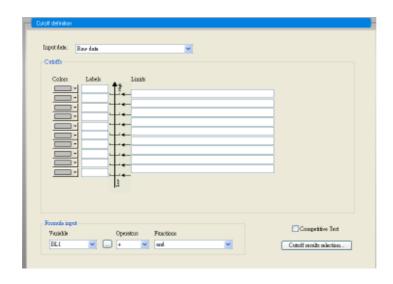
用來定義於實驗中有配置定量實驗時之標準線性相關參數,按下選項後出現以下視窗:



設定包含資料、分析形式、座標等選項

Data 資料:選擇線性資料來源。也可套用之前已儲存的標準曲線檔案。

Analysis Type 分析形式:軟體可依據酵素免疫分析套組產品說明書,提供 10 種常用的線性計算方式以供選擇(詳見第 36 頁)。也可點選 Extrapolation 外插法增加計算範圍,以算出超出標準線性之樣品濃度值,鍵入 1 代表可增加 10%計算範圍。


Axis 坐標軸:可定義 X 軸及 Y 軸的名稱及刻度。

Graph 圖表名稱:定義圖表細項設定,例如圖表名稱,顏色及字型大小等。

### **Cuttoff Definition**

若實驗中有配置定性實驗時之臨界值相關參數,可計算分級的開始界限。按下選項後出

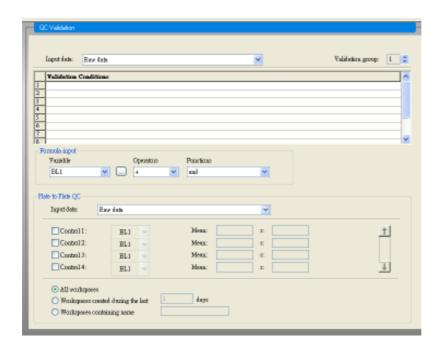
## 現以下視窗:



Input Data 資料來源:透過下拉式功能選擇計算公式所需之資料種類

Color 顏色:可使用不同顏色來做分級區分。

Label:定義臨界值的報告形式。


Limit 計算公式:定義臨界值的計算公式。

Competitive 競爭型試驗: 若實驗設定為競爭型試驗,就會將讀值較高的為陰性讀值較

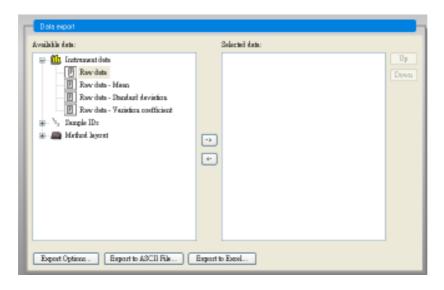
低的陽性。

### **QC** Validation

可讓使用者定義檢查實驗是否正確的公式。按下選項後出現以下視窗:



Input Data 資料來源:透過下拉式功能選擇計算公式所需之資料種類


Validation Group 確認標準號碼群組:定義確認標準公式號碼,用以區分輸入資料來源之不同。

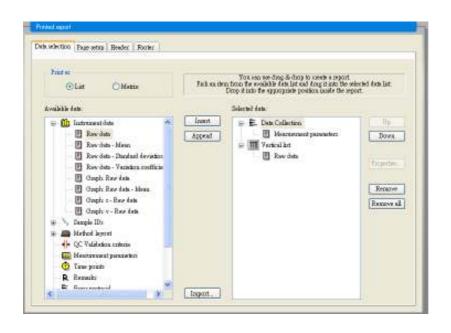
Validation Formula 確認標準公式:可設定多達 10 個公式·如果經計算後與確認標準不同·螢幕會以 TRUE 或 FALSE 顯示警告視窗。

### Data Handling

可讓使用者自行定義報告輸出,列印或存檔格式

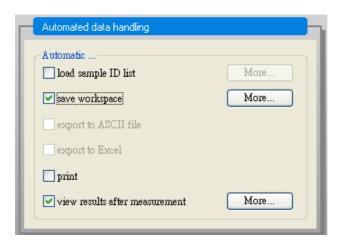
Data Export:可自行選擇輸出至 Excel 或 ASCII 檔案之格式及排列方式。將所需輸出之數據按雙右鍵從 Available data 欄位拉取至 Selected data 欄位·輸出之格式可依據需求以平行 (Horizontal)或垂直 (Vertical)方向並以條列式 (Table)或矩陣式 (Matrix)做排列。




Printed Report:可自行編輯報告列印格式

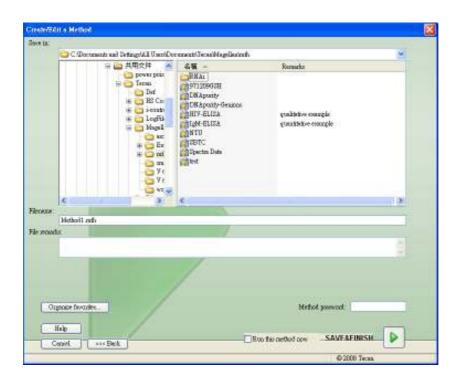
Data Selection:設定報告設定資料表·先設定以條列式 (List)或矩陣式 (Matrix)做列

印排列·將所需輸出之數據從 Available data 欄位利用插入(Insert)或附加(Append)


至 Selected data 欄位。

Page Set Up/Header/Footer:設定報告設定的表頭/頁尾,間隔排序等細項設定。

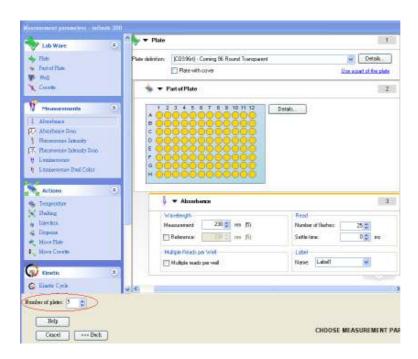



Automated Data Handling:可設定自動資料處理·點選所需要自動處理的項目·測

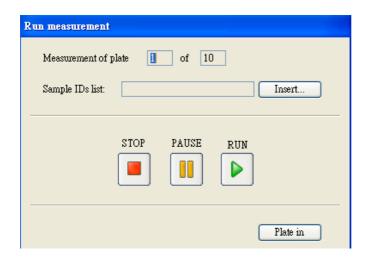
量後可自動執行存檔、列印或輸出等。



## III. Saving the Method 檔案儲存


所有測量參數及計算公式都編輯完成後,即可按下 NEXT 鍵將方法執行檔進行存取動作。軟體可允許自行定義檔案放置位置及檔名,以方便不同使用者使用。下次只需從 Start Measurement Wizard 裡的 Use Predefined Method 裡開啟存檔過之方法執行檔即可進行判讀。




### IV. Multiplate Methods 多盤測量模式

若 TECAN 判讀儀為 Infinite 系列或 Safire<sup>2</sup> 等級可支援多盤測量模式,選擇方式為編

及參數的左下方,鍵入所需之待測微孔盤數量。



開始測量後會在每個微孔盤測定間隔跳出提醒裝置



# 四 常見之運算公式

Magellan 麥哲倫軟體為一套具有數據運算操作功能的軟體·此章節提供一些常見的運算公式以方便使用者撰寫相關程式。

Transformation 工具欄中有下列選項與功能:

Number 每一個計算公式都會有一個程式編號·再新增公式時·首先要給予它一個號碼。

爾後選擇公式只須從公式表中選擇其號碼即可。

Input data 從選單中選取要套用於此公式的值·它可以是測量出的值·平均值或是已定義的轉換程式(defined transformation)。

Output 代表此計算公式結果的名稱。

此選單包含在這個實驗中應用的公式。使用者可從選單中選擇所需的公式,或新增公式。已 定義的變數也可在此使用。

Variable 所有可使用的變數表單。 (x 代表目前 well 的值)

Operators 所有可使用的運算符號表單。

Functions 所有可套用的運算功能表單。

#### Set

將公式設定於選取的區域中。

#### Delete

將選取區域中的公式刪除。

1. 常用的公式運算符號如下:

加 +

減 \_

乘 \*

除 /

次方 ^

小於 <

小於等於 <=

大於 >

大於等於 >=

相等 ==

不等於!=

等於 =

例如:

If (x = 0.000), then x = 1.000 · 如 x 的值是 0 時 · 則把 x 的數據設為 1

x^y 設x的次方為y·例: 3^2 = 9

2. 標準曲線分析形式

軟體可依據酵素免疫分析套組產品說明書,提供10種常用的線性計算方式以供選擇。

細項公式如下:

#### 2.1 Point to Point



# 2.2 Linear Regression

$$\begin{split} f: \{x_1, x_n\} &\to R \\ x \mapsto A : x + B \\ \text{where A and B are determined by minimizing the error function} \\ & err(A,B) = \sum_{i=1}^{p} (f(x_i) - y_j)^2 \\ & \text{The solution is unique if} \\ & \max \begin{cases} x_1 & 1 \\ \vdots & \vdots \\ x_n & 1 \end{cases} = n \\ & \text{which is true if } x_i \neq x_j \forall i, j = 1, \dots, n \text{ (see general condition)} \end{split}$$

# 2.3 Non-Linear Regression

$$\begin{split} f: [x_1,x_n] - (-b) &\to \mathcal{R} \\ x \mapsto \frac{A\cdot x}{B+x} \\ \text{where } A \text{ and } B \text{ are determined by solving the linear regression problem for the transformed base points:} \\ (x_1,\frac{x_1}{y_1}),...,(x_n,\frac{x_n}{y_n}) \\ \text{Linear regression:} \\ g: [x_1,x_n] &\to \mathcal{R} \\ x \mapsto k \cdot x + d \qquad \text{minimizing} \\ err(k,d) &= \sum_{i,d}^x (g(x_i) - \frac{x_i}{y_i})^2 \\ \text{The parameters } A \text{ and } B \text{ are calculated from } k \text{ and } d \text{ by} \\ A &= \frac{1}{k} \quad \text{and} \quad \mathcal{B} = \frac{d}{k} \\ \text{This function f is not continuous at } -B. \end{split}$$

# 2.4 Polynomial

$$\begin{split} f: \{x_1, x_2\} &\to \mathcal{R} \\ x\mapsto \sum_{i=0}^{n-1} a_i \cdot x^i \\ &\text{order} = 2 \text{ or } 3 \\ &\text{(no-order)} \\ &\text{where } a_{\text{order}} \dots a_n \text{ are determined by minimizing the error function} \\ &\text{ever} (a_{\text{miss}}, \dots, a_n) = \sum_{i=1}^n (f(x_i) - y_i)^2 \\ &\text{The solution is unique if} \\ &\text{Trank} \begin{pmatrix} x_i^{\text{order}} & \dots & x_i & 1 \\ \vdots & \vdots & \vdots & \vdots \\ x_n^{\text{order}} & \dots & x_n & 1 \end{pmatrix} = analor + 1 \\ &\text{which is true if} \quad x_i \neq x_i \forall i, j = 1, \dots, n \end{split}$$

### 2.5 Cubic Spline

$$\int\limits_{h}^{2} \left(\frac{d^2f}{dx^2}\right)^3 dx$$
 . Which is a simplified term for the deformation energy of a spline. Not-a-knot condition at  $x_a$  and  $x_m$ , also the third derivation is continuous.

### 2.6 Akima

$$\begin{array}{l} q_1=\frac{y_1-y_{j+1}}{\zeta_1-\zeta_{j+1}} \text{ are the slopes of the linear interpolator between point } i \text{ and point } i-1,\,i=2,\dots,n\\ m_i=\frac{q_1\mid q_{i+2}-q_{i+1}\mid +|q_{i+1}\mid q_i-q_{i+1}\mid}{|q_{i+2}-q_{i+1}\mid +|q_{i}-q_{i+1}\mid}_{i=3,\dots,n-2}\\ \text{Spacial cases:} \text{ is }q_i=q_{i+1}, \text{ set }\rho^*(x_i)=q_i=q_{i+1}\\ \text{ is }q_{i+1}=q_i \text{ and }q_{i+1}+q_{i+2}, \text{ so is }y_i'=q_i \text{ (analog for }q_{i+1}=q_{i+2}),\\ m_1=\frac{q_1+q_{i+1}}{2}\\ \text{ is }q_{i+1}=q_i \text{ and }q_{i+1}=q_{i+2}, \text{ set}\\ \text{ }Positive indexes 1, 2, n-1, n the slopes cannot be estimated by this algorithm.}\\ \text{Now we have the following conditions for the } 3^{r_0} \text{ order interpolation polynomial } p_i, i=1,\dots,n-1, p_i(x_i)=q_i\\ p_i(x_{i+1})=q_{i+1}\\ p_i(x_{i+1})=m_{i+1}\\ p_i(x_{i+1})=m_{i+1}\\ \text{ which are four conditions for each } 3^{r_0} \text{ order interpolation polynomial } p_i,\\ \end{array}$$

## 2.7 LogitLog

$$\begin{split} f: \{x_1, x_n\} &\to Z \\ x \mapsto D + \frac{d-D}{1+\left(\frac{x}{C}\right)^n} \end{split}$$
 for the description of algorish contribution of data. The parameter can be interpreted as: 
$$A = \lim_{x \to \infty} f(x) \\ A = \lim_{x \to \infty} f(x) \\ D = \lim_{x \to \infty} f(x) \\ D = \lim_{x \to \infty} f(x) \\ A, D are determined as the minimum respectively maximum on vice versa if the function is decreasing). Then the intermed parameter regulation problem is actived for transformed base points: 
$$X' = \log_{10} x \\ Y = \lim_{x \to \infty} \frac{D-y}{D-A} \\ \frac{D-y}{1-D-A} \\ S: \{X_1, Y_1\} \to R \\ X \mapsto R \cdot X + d \\ A = \lim_{x \to \infty} \frac{1}{A}(g(x_1) - Y_1)^2 \\ \text{The parameters B, C are determined from b, if } B = m \cdot \log_{10}(g) \\ C = e^{\frac{1}{2}} \end{split}$$$$

#### 2.8 Four Parameters

$$f: [x_1, x_n] \to R$$

$$x \mapsto D + \frac{A - D}{1 + \left(\frac{x}{C}\right)^B}$$

#### 2.9 Five Parameters

$$f:[x_1,x_n] \to R$$
  
 $x \mapsto D + \frac{A-D}{(1+(\frac{x}{C})^B)^B}$ 

# 五 常見之實驗範例

以下以一個常見的定量 ELISA 為範例:

測定參數如下:

樣品擺放位置、數量和形式如下:

| 1 10 12 30 11 502 8 1 W 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 V [HANK ] COS   JOST   1   1   1   V   DOTE   COS   JOST   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1   c   wc   cr   se               c     wc     cr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| [ ]   0   C1   C5   S3                        C1   C2   S3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| +   c1   c2   43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| @   C2   C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| " [ ] [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\overline{\sigma}$ endicated $SO - IO$ , confiner on large $M$ , called the $\sigma$ and the $IO - IO = IO - IO$ , in the $\sigma$ and $\sigma$ are all and $\sigma$ |
| 5 Sumples   \$1 5. = 5.mg/cs.   511                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

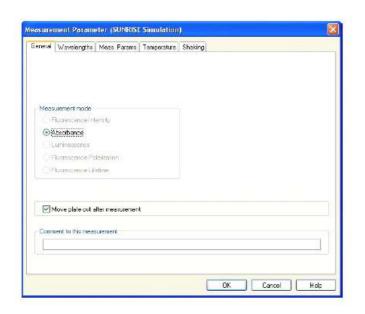
### 標準曲線配置如下:

| Calibrator 1 | 5 UA/mL   |
|--------------|-----------|
| Calibrator 2 | 10 UA/mL  |
| Calibrator 3 | 20 UA/mL  |
| Calibrator 4 | 40 UA/mL  |
| Calibrator 5 | 80 UA/mL  |
| Calibrator 6 | 160 UA/mL |

### 臨界值相關參數設定如下:


IgM < 18 UA/mL Negative  $18 UA/mL \le IgM \le 22 UA/mL$  Intermediate  $IgM \ge 22 UA/mL$  Positive

細項的設定參數以圖像顯示如下:


建立一個程式執行檔:



## 設定測量參數:




定義測量波長來進行吸光模式,也可選擇參考值波長扣除背景值進行雙波長測量模式。

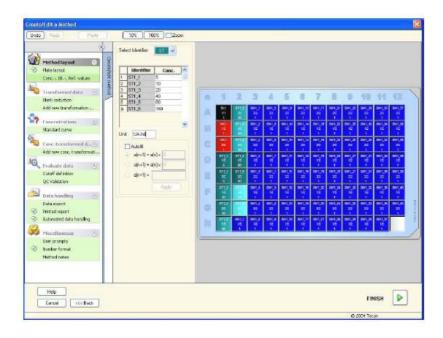


設定樣品擺放位置、數量和形式。在辨識符號選擇所需符號,之後在重複選項中點選數量及

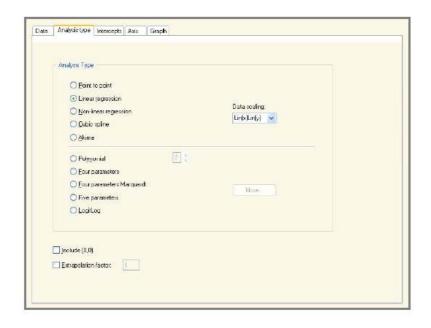
排列順序,利用滑鼠在視窗上選擇所要設定範圍或直接點選單獨位置,選取好之後,按下

Fill Selection 按鍵及完成設定。

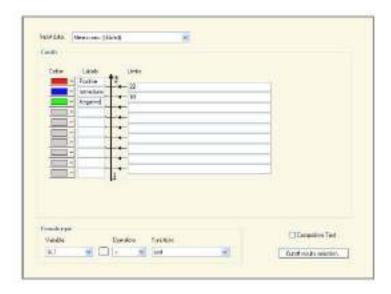



進行空白對照組之扣除,參數編輯為 x-BL1

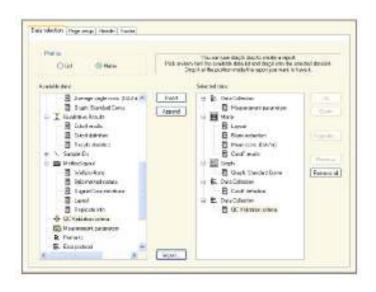



所有空格內都多了 x-BL1 的運算公式

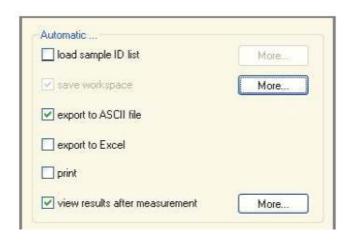



接著依序鍵入標準品對照組濃度




之後依據 kit 建議選擇標準曲線資料、分析形式、座標等選項




設定臨界值相關參數



#### 自行選擇報告列印格式:



#### 最後選擇設定自動資料處理,點選所需要自動處理的項目

