

Confocal Principle

Jerry Fan Application Engineer ZEISS Research Microscopy Solutions Taiwan

Keep the Context of Your Experiments

The Applications of Light Microscopy

The Applications of Light Microscopy

Magnification and Resolution

- Magnification? 100x? 1000x? 999999999x?
- Total magnification = **Objective** magnification x **Eyepiece** magnification
- ~1500x is the limit of Light Microscopes, magnification above 1500x is meaningless
- Why?.

Magnification and Resolution

Magnification and Resolution

Magnification alone is not enough: Resolution determines what we see.

Resolution of Your Eyes

Definition:

The resolution limit is reached, when two point-like objects can not be imaged as two distinct structures anymore.

The **distance** between the objects is called the resolution limit.

 $| \longrightarrow |$ d = 10 cm d = 0.1 cm

Resolution of Microscopes

Definition:

The resolution limit is reached, when two point-like objects can not be imaged as two distinct structures anymore.

The **distance** between the objects is called the resolution limit.

ZEIN

Diffraction Limited Resolution

 $\lambda =$ wavelength of light, e.g. 550 nm (green)

The resolution of light microscope $d_0 = 200 \sim 300 \text{ nm}$

Longer wavelength being able to travel deeper into tissue

Resolution – Wavelength

400 nm

Resolution – N.A.

0.1

Air Pattern \Leftrightarrow Radius (r) \bigcirc Air Patterns D = 9.00 μ **Radial Intensity** Distribution (PSF)

0.36

Resolution – N.A.

Numerical Aperture

Low

High

Numerical Aperture (NA) = $n \cdot \sin \theta$

N.A. determines the brightness and resolution of an image formed by an objective

Resolution – N.A.

Numerical Aperture

Higher NA offers

- 🙄 Better resolution & brighter image
- Reduced working distance & sensitive to spherical aberration

Numerical Aperture

High

Immersion & Refractive Index

Refractive Index (n)

Refractive Index (n)

Higher NA + Immersion = Higher Resolution

ZEINS

40x / 0.95 air

40x / 1.2 water

Higher NA + Immersion = Higher Resolution

ZEISS

40x / 0.95 air

40x / 1.2 water

Immersion Objectives

Commercial Products for Cleaning Microscope Optical Systems

(a) Cleaning Center-to-Rim (b) (c) (d)

Rim-to-Center

Techniques for Clearing Optical Surfaces

Immersion & Refractive Index

X

Sample objective only / might differ according to settings

Mechanical Correction Collar

Cover glass thickness correction Different Immersion (Oil, Glyc, Water) Different Temperature Adjusting an Iris Diaphragm

Multi-Immersion objectives (Live Cell Imaging-objectives) can be used when working with different immersion media (oil, glycerol, water)

Sample Carrier Thickness

Thickness no. 1 (0.13-0.16 mm) Thickness no. 1.5 (0.16-0.19 mm) Thickness no. 1.5H (0.165-0.175 mm)

Cover-glass thickness (mm) = ICS optics: ∞

ICS optics

Contrast method

- Cover-glass thicknesses: 0-0.17
- OFN: Objective field number 18

Contrast Methods

Sample Carrier Thickness

Contrast Methods of Transmitted Light

Brightfield

Colorful samples Widefield microscopes

Phase contrast

Colorless samples Widefield microscopes

ZEINN

Dark field

Translucent samples Widefield microscopes

DIC (Differential Interference Contrast) Colorless samples Widefield / confocal microscopes

Phase Contrast vs DIC

Ph (Phase Contrast)

DIC (Differential Interference Contrast)

(a) (c)

DIC

Phase

Fluorescence Microscopy

Fluorescence Contrast (FL)

- Specific, precision to molecule level
- Multiple staining
- High resolution
- 4D imaging
- Fluorescence bleaching 😕
- Gene transfection, fluorescent dyes
- Fluorescence filters
- Fluorescent light sources

The Nobel Prize in Chemistry 2008

© The Nobel Foundation. Photo: U. Montan Martin Chalfie

Montan Roger Y. Tsien

Fluorescence Contrast (FL)

ZEISS

The Filter Sets for Fluorescence Microscopy

ZEISS

Light Path of Fluorescence Microscopy

ZEISS

Fluorescence Filters

Shortpass filter
Longpass filter
Bandpass filter

	DAPI		FITC	TRITC		
00	0 nm	500 nm	550	nm	630	nm
	FITC Longp	ass			→	Þ
	FITC Bandp	ass —		ı		

Fluorescence Filter

Keep the Context of Your Experiments

ZEISS LSM Confocal

Optical Sectioning | Extract the Layer of the Image

We want focused image!

V. Wilkens, University of Osnabrueck, Germany., Optical Sectioning

Confocal microscopy allows you to optically section thick samples

ZEISS

Holly Aaron (UC Berkeley); N. Kenny, K. McClelland, S. Miller (U of Oxford, U of Queensland, U of Cambridge), D. Reiff (U of Freiburg); Y. Zuo, A. Aharon, A. Schnulz (U of California Santa Cruz); Courtesy of Balazs Erdi, Max F. Perutz (Vienna Biocenter, Austria); Jason D Vevea (University of Wisconsin-Madison, USA); O. Samajova (Faculty of Science, Palacky University Olomouc, Poland)

LSM | Fast and Gentle Multiplex Imaging

Highest sensitivity

Fast & High throughput

High resolution

Spectral multiplexing

ZEISS

LSM 9 Series | Versatile Confocal Platform

ZEISS

Airyscan 2

Superresolution

Incubation Module Live cell imaging

Al Sample Finder Automated imaging startup

Dynamic Profiler

Gain molecular info

Total Internal Reflection Microscopy (TIRF) Service - Creative Biostructure (creative-biostructure.com)

Noise-free Images are Physically Impossible

Point-Spread-Function

The image of a point is not a point. It's a complex 3-dimensional diffraction pattern.

ZEIN

Imaging in Mathematical Terms

"Convolution" of the Object with the PSF

ZEINN

Inverting the Imaging-Process with Mathematics

A Deconvolution of the Image

"Re-assignment" of "photons"

Widefield Imaging with Deconvolution

Deconvolution Algorithms

A unique confocal experience LSM Plus

Drosophila egg chambers stained for F-actin (Phalloidin, magenta) and DE-Cadherin (cyan)

Sample courtesy of Thea Jacobs, AG Luschnig, WWU Münster, together with T. Zobel, Münster Imaging Network, Germany

A unique confocal experience LSM Plus

Drosophila egg chambers stained for F-actin (Phalloidin, magenta) and DE-Cadherin (cyan)

Sample courtesy of Thea Jacobs, AG Luschnig, WWU Münster, together with T. Zobel, Münster Imaging Network, Germany

A unique confocal experience LSM Plus

Drosophila egg chambers stained for F-actin (Phalloidin, magenta) and DE-Cadherin (cyan)

Sample courtesy of Thea Jacobs, AG Luschnig, WWU Münster, together with T. Zobel, Münster Imaging Network, Germany

LSM Plus: Better data, faster

Image of bone marrow section showing bone (grey), endomucin vessels (green), dapi (blue) and megakaryocytes (red). Courtesy of George Adams (Imperial College London).

Why do we need optical sectioning

We want focused image

Unfocused images are annoying

The Point-spread-function of a Microscope

Point-Spread-Function

The image of a point is not a point.

fluorescent point source

The Point-spread-function of a Microscope

Point-Spread-Function

The image of a point is not a point.

Point-Spread-Function

The image of a point is not a point.

It's a complex 3D diffraction pattern.

ZADINN

Point-Spread-Function

The image of a point is not a point.

It's a complex 3D diffraction pattern.

Dimensions of the central peak:

image

fluorescent point source

$$a_{lateral} \approx 0.6 \frac{\lambda}{NA}$$

$$r_{axial} \approx 2 \frac{n \cdot \lambda}{NA^2}$$

ZEISS

Defocusing of an Object

Conventional microscope

The integrated intensity in each image is <u>independent</u> of the distance from the focal plane!

z=0.2 µm

z=0.4 μm

What is an optical section?

The integrated intensity in each image plane is **independent** of the axial position!

What is an optical section?

The integrated intensity in each image plane is **independent** of the axial position!

ZEISS LSM Confocal

ZEISS LSM Confocal

ZEISS LSM Confocal

Point Scanning Confocal Microscopes

Confocal principle

Spot Illumination

A laser beam which is focussed to a diffraction limited spot illuminates the sample and is used for fluorescence excitation.

Detector

Confocal principle

Spot detection

The emitted fluorescence light is separated from the excitation light by appropriate beamsplitters and is usually detected by a photomultiplier.

Confocal principle

Spot detection

The emitted fluorescence light is separated from the excitation light by appropriate beamsplitters and is usually detected by a photomultiplier.

The crucial part is the pinhole, which is placed in front of the detector – in a conjugated plane to the focal plane of the objective.

Confocal principle

Spot detection

This pinhole simply blocks fluorescence light, which originates from above or below the focal plane of the objective.

Confocal principle

Spot detection

This pinhole simply blocks fluorescence light, which originates from above or below the focal plane of the objective.

Confocal principle

Confocal principle

From a Single Spot to a Complete Image

Spot Illumination Requires Two-dimensional Scanning

X-Y scanning

To generate a two-dimensional image, the laser spot is scanned in x and y direction to illuminate the whole field of view.

This is usually done by scanning mirrors.

limited z-resolution thick sections

high z-resolution 3D via sectioning

The Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Germany Breeding Research on the Way to a Plant-Based Bioeconomy

Microscopy is an important link between the different research groups. Michael Melzer | IPK Gatersleben Your needs our motivation

Adapted from https://academic.oup.com/ib/article-abstract/8/6/672/5115178

Your needs our motivation

Scaling from 2D Cell Cultures to New 3D Model Systems

Adapted from https://academic.oup.com/ib/article-abstract/8/6/672/5115178

Integrated Imaging Platform

High Resolution Optical Sectioning

High Resolution Optical Sectioning

Lilium auratum pollen grain. Airyscan Multiplex mode. Courtesy of Jan Michels, Zoological Institute, Kiel University

Sensitive & Speedy Imaging

Time series

Data courtesy of Ann-Kathrin Günther & Dr. Gregor Eichele, MPI for Biophysical Chemistry, Göttingen, Germany

Acquire Large Volumes at Best Quality

Large Volume Imaging

Adult mouse brain Thy1-GFP (Neurons) CLARITY

12 tiles and 800µm z-stack Total sample depth 1.4mm

Tobias Ruff, Max Planck Institute of Neurobiology, Martinsried (Munich), Germany.

Spatial Biology Studies in Lung Tissue using Spectral Microscopy

Spectral Unmixing

Identification of macrophage niches in wounded lungs

Cecilia Ruscitti PhD Student at the Laboratory of Immunophysiology Supervised by Dr. Thomas Marichal, University of Liège, Belgium

Enhanced resolution and sensitivity with Airyscan

ZEISS

Enhanced resolution and sensitivity with Airyscan

ZEISS

Confocal Imaging with Pinhole at 1 AU

ZEINN

Confocal Imaging with Pinhole at 0.2 AU

Confocal Imaging with Airyscan

Enhanced resolution and sensitivity with Airyscan

120 nm lateral 350 nm axial

Neuromuscular junction, bruchpilot, Drosophila melanogaster Sample courtesy of J. Pielage, Basel, Switzerland

Airyscan Joint Deconvolution

HeLa cell, 4x expanded and labelled with acetylated alpha tubulin. Courtesy of S. Zhang, Prof. Liou Yih-Cherng's lab, Singapore

General Optical Sectioning Methods

ZEISS Elyra 7 with Lattice SIM Superresolution at its finest

ZEISS Elyra 7 with Lattice SIM Fast and gentle live cell imaging

Elyra 7 Expand your possibilities Apotome mode for fast optical sectioning of **large samples**

Achieve superfast optical sectioning and benefit from nearly isotropic resolution over large volumes.

750 x 750 x 70 µm volume of uncleared Mouse Brain imaged with 25x/0.8 objective lens.

Sample courtesy of Herms lab, DZNE, Munich, Germany.

Structured Illumination Microscopy (SIM) Technique summary

Principle

Uses interaction of grid pattern with sample to extract higher frequency information

Advantages of SIM

- Doubling of diffraction-limited resolution in 3D (120 nm in xy and 300 nm in z)
- Standard sample preparation
- Free choice of fluorophores
- Large field of view

Lattice Structured Illumination Microscopy Changing the pattern – How does it work?

Utilizing high-frequency striped illumination to double the resolution

Fig. A: Resolution is limited by the NA of the objective

Fig. B: The product of Structured Illumination and normally unresolvable specimen structure produce recordable moiré fringes containing the specimen information at double the conventional

Fig. C: Images with resolutions equivalent to those captured with objective lenses with approximately double the NA are achieved.

Lattice Structured Illumination Microscopy Changing the pattern – How does it work?

Lattice Structured Illumination Microscopy Changing the pattern unlocks multiple benefits

Lattice Structured Illumination Microscopy Changing the pattern unlocks multiple benefits

Lattice Structured Illumination Microscopy Changing the pattern unlocks multiple benefits

Bypolius of antimactifi

Elyra 7 Expand your possibilities Apotome mode for superfast optical sectioning

Perform fast and gentle live cell imaging with high contrast and resolution.

Five images with different grid positions are acquired.

Get superfast optical sectioning and nearly isotropic resolution.

Elyra 7 Expand your possibilities Apotome mode for superfast optical sectioning

Five images with different grid positions are acquired.

The Lattice SIM algorithm generates an image containing only information from the focal plane.

Get superfast optical sectioning and nearly isotropic resolution.

Deliver the very latest developments in Super Resolution Microscopy ZEISS Elyra 7 combines fast live cell imaging with super resolution

Research requirements or "I really need...":

Sub-100nm resolution down to 60nm

Research requirements or "I DON'T need...":

Compatibility with standard fluorophores commonly used autofluorescent proteins and organic dyes

Fast live-cell super-resolution up to 255fps

Flexibility to easily switch between different magnifications 10x, 20x, 25x, 40x, 63x, 100x objectives

Imaging for many hours or days

Imaging deep into the sample

Super-Resolution Techniques

Keep the Context of Your Experiments

Why Correlative Microscopy ?

Confocal Microscope to FIB/SEM for Targeted Milling

Correlative Microscopy

- Connect various microscopy system (i.e., LM, EM, XRM)
- Combine analytical solution (i.e., Raman, EDS)

Effortless Image Acquisition and Analysis

Data Integration between Different Imaging Modalities

ZEN Connect

- Overlay and alignment of all your images
- Intelligent data management

A Tree RM 3883 200 CPU 0 % Frame Rate: Pixel Value: Postor: L Storage Folder: User: User

Convenient Overview & Navigation

Navigated Imaging

fish at low magnification

Sample courtesy of J. Hartmann and D. Gilmour, EMBL,Heidelberg, Germany

Convenient Overview & Navigation

with high resolution

Microscopy Images: A Picture is worth a thousand words!

How Many Cells are DAB positive?

A: 1-10% B: 10-20% C: 20-30% D: 30-40%

Microscopy Images: A Picture is worth a thousand words!

How Many Cells are DAB positive?

A: 1-10% B: 10-20% C: 20-30% D: 30-40%

$$DAB = \frac{234}{234 + 418} \% = 35.9\%$$

ZEISS Image Analysis Software

Image Analysis

Flexible analysis pipeline

BioApps

Al-powered image analysis for specific application

arivis Pro

3D image analysis and visualization

Local AI image analysis

arivis Cloud

Cloud-based AI image analysis

Image Analysis Workflow

Pre-Processing

Segmentation

Feature Detection > Data Presentation

0.569

0.802

0.762

0.697

0.826

0.688

169.015

146.652 160.925

155.927 153.608

173.962

166.439

158.297

Object association

Scatter plot for relationship analysis

3 557 861

4,241.335

3,663.464 3.336.314

4,302,819

3,443.283 3,737.238

4,315,105

Feature measurements

Heatmap for HCS

Scatter plot for relationship analysis

New Feature

Intuitive Analysis Workflow

ZEN Image Analysis

- Step-by-step analysis workflow
- Customize analysis
- Acquire statistical results

2D Segmentation

✓ Execute

🔺 🐽 Base

Image Analysis Wizard - ZEN MAIN (ZEN image processing)

✓ Interactive

Image Analysis Wizard

 AllNuclei SingleNucleus DAPI AllSpots SingleSpots EGFP 	1 2 3 4		
Intellesis Trainable Class Segmenter Model Name SP100 Model Class Object Min. Confidence (%) () Minimum Area ()	Apply Select Select Model Reset 51		
Min. Hole Area	Next V	Zoom Channels DAPI EGFP Channels DAPI EGFP Single Channel Range Indicator	Analysis S Show Objects V Fill Opacity S Show All Classes AllNuclei 1 AllNuclei 2 AllSpots 3 SingleSpots EGFP 4
< Back Next >	Finish	Cancel ^	i ^

3D Segmentation using a RF-based model in ZEN blue

Simple, Modular, AI-powered Image Analysis

BioApps

- Application-specific tools for cell-based imaging laboratories
- Easy-to-use with an intuitive user interface
- Concise results in easy-to-read formats

Intellesis

- Automated image segmentation powered by machine learning
- Use your expertise to train the software on your own images
- Analyze multimodal images from different sources

New Feature

Intellesis – Simple User Interface

- Cells image using Phase-Gradient Contrast on a CD7
- Labeled with 2 classes inside Intellesis Training UI
- Feature Extractor: DeepFeatures256
 + CRF Postprocessing

Out of the Box Solutions For All Research Topics in arivis Pro

Developmental Biology

Cell and Organelle Tracking 3D and 4D Analysis Membrane Segmentation

Neuroscience

Compartment Analysis Distribution Analysis Stitching / Multi-view image reconstruction

High Content

Well-by-well analysis Cell counting Organoids and Spheroids

Cell Biology

Organelle Analysis Distance Measurements Compartment Analysis

Gain Spatial Information using 3D Reconstruction

Seeing beyond

113講習課程問券

如有任何疑問,請洽儀器中心專員: 陳珮君、呂詠玉,校內分機 #65980, #66185 儀器中心分機 #62382