進入內容區塊

國立陽明交通大學醫務管理研究所

林妙聰 教授

  • 發布日期:113-12-10
  • 更新日期:114-06-04
  • 發布單位:醫務管理研究所
林妙聰
 
林妙聰
Lin, Bertrand M.T.
(02)2826-7000 #31472
bmtlin@nycu.edu.tw
office 光復校區管理二館MB310
 
學歷
  • 國立交通大學 資訊工程博士
  • 國立交通大學 資訊科學研究所
  • 國立交通大學 資訊科學系
現職
  • 國立陽明交通大學資訊管理研究所 教授
經歷
  • 國立交通大學資訊管理研究所 教授兼所長
  • 國立交通大學資訊管理與財務金融學系 教授
  • 國立暨南大學資訊管理學系 教授、系主任
  • 銘傳大學資訊科學系 教授、系主任
  • 銘傳大學資訊管理學系 副教授
  • 訪問學者
    1. Department of Industrial & Operations Engineering, University of Michigan
    2. Department of Computer Science, NJIT
    3. Sobolev of Mathematics, Russian Academy of Sciences
    4. IBM T.J. Watson Research Center, N.Y.
  • 訪問教授
    1.  Faculty of Physical and Mathematical Sciences, University of Technology Sydney
    2.  Warwick Business School, Warwick University Senior Research Fellow: Department of Management, The Hong Kong Polytechnic University
  • Area editor, NTU Management Review 台大管理論叢 (12/2022~)
  • Associate editor, Asia-Pacific Journal of Operational Research (09/2008~)
  • Associate editor, Journal of Industrial and Management (04/2011 ~)
  • Associate Editor, Journal of Scheduling (02/2012 ~)
  • Area Editor, Computers & Industrial Engineering (05/2020 ~)
研究興趣
排程理論、作業管理、離散最佳化

研究計畫
  • Flow-Shop Scheduling to Maximize the Total Weighted Early Work (NSTC 112-2410-H-A49 -014 -MY2)
  • Single-Machine Scheduling with Weight Modifying Activities (MOST110-2410-H-A49-020-MY2)
  • Deploying Reinforced Learning to Enhance Search Effectiveness of Meta-Heuristics (Co-PI) ITRI 工研院
  • A Metric Approach for Analyzing the Performance of Approximation Algorithms for NP-Hard Scheduling Problems (PI) (MOST109-2923-H-009-001-MY3)
  • Minimizing the Salvage Time in Relocation Scheduling (PI) (MOST 109-2410-H-009-029)
  • Preemptive Scheduling on Parallel Machines with Min-Sum Objective Functions (PI) (MOST-108-2410-H-009-047-MY2)
代表著作
  1. Tanaka, S. & Lin*, B.M.T. (2025). Single-machine scheduling to minimize the size of input buffer. Naval Research Logistics, https://doi.org/10.1002/nav.22256.
  2. Huang, K.W., Lin*, B.M.T. (2024). Deep Q-Networks for minimizing total tardiness on a single machine. Mathematics, 13(1), 62.
  3. Huang, C.T., Hsieh, T.J.*, & Lin, B.M.T. (2024). Data-driven scheduling for the photolithography process in semiconductor manufacturing. Journal of Industrial and
    Management Optimization, 21(3), 1946-1963.
  4. Zinder, Y., Berlinska*, J. & Lin, B.M.T. (2024). Makespan minimisation for independent jobs with shared additional operations and parallel identical machines. Computers and Operations Research, 170, 106780.
  5. Lin*, B.M.T., Liu, S.W. & Mosheiov, G. (2024). Scheduling with a weight-modifying activity to minimize the total weighted completion time. Omega, 128, 103225.
  6. Cheng, T.C.E., Kravchenko, S.A., & Lin*, B.M.T. (2024). On scheduling of step-improving jobs to minimize the total weighted completion time. Journal of the Operational Research Society, 75(4), 720-730.
  7. Chao, M.-T. & Lin*, B.M.T. (2023). Scheduling of software test to minimize the total completion time. Mathematics, 1(22), 4705.
  8. Lin*, B.M.T., Lin, S.M., & Shyu, S.J. (2023). Optimization applications of Goldbach’s conjecture, Heliyon, 9(10), 2023, e20550.
  9. Lin*, T.C. & Lin, B.M.T. (2023). Optimal fair-workload scheduling – A case study at Glorytek. Mathematics, 11(19), 10.3390/math11194051.
  10. Gupta*, J.N.D., Wu, C.C., Lin, W.C., Zhang, X.G., Bai, D., Lin, B.M.T., & Liao, C.C. (2023). Bicriteria single-machine scheduling with multiple job classes and customer orders. Applied Soft Computing, 147, 110809.
gotop